In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to:
A connection for which the covariant derivatives of the metric on E vanish.
A principal connection on the bundle of orthonormal frames of E.
A special case of a metric connection is a Riemannian connection; there is a unique such which is torsion free, the Levi-Civita connection. In this case, the bundle E is the tangent bundle TM of a manifold, and the metric on E is induced by a Riemannian metric on M.
Another special case of a metric connection is a Yang–Mills connection, which satisfies the Yang–Mills equations of motion. Most of the machinery of defining a connection and its curvature can go through without requiring any compatibility with the bundle metric. However, once one does require compatibility, this metric connection, defines an inner product, Hodge star (which additionally needs a choice of orientation), and Laplacian, which are required to formulate the Yang–Mills equations.
Let be any local sections of the vector bundle E, and let X be a vector field on the base space M of the bundle. Let define a bundle metric, that is, a metric on the vector fibers of E. Then, a connection D on E is a metric connection if:
Here d is the ordinary differential of a scalar function. The covariant derivative can be extended so that it acts as a map on E-valued differential forms on the base space:
One defines for a function , and
where is a local smooth section for the vector bundle and is a (scalar-valued) p-form. The above definitions also apply to local smooth frames as well as local sections.
The bundle metric imposed on E should not be confused with the natural pairing of a vector space and its dual, which is intrinsic to any vector bundle. The latter is a function on the bundle of endomorphisms so that
pairs vectors with dual vectors (functionals) above each point of M.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
The contorsion tensor in differential geometry is the difference between a connection with and without torsion in it. It commonly appears in the study of spin connections. Thus, for example, a vielbein together with a spin connection, when subject to the condition of vanishing torsion, gives a description of Einstein gravity. For supersymmetry, the same constraint, of vanishing torsion, gives (the field equations of) 11-dimensional supergravity.
In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Roughness, defined as unevenness of material surfaces, plays an important role in determining how engineering components or natural objects interact with other bodies and their environment. The emergence of fractal roughness on natural and engineered surfa ...
SPRINGER HEIDELBERG2023
Reinforced concrete flat slabs consist of a continuous, thin concrete plate that rests on a grid of columns. The supporting surface of the columns is very small compared to the floor plan dimensions, leading to concentrations of shear forces near the colum ...
EPFL2024
A floating platform for a wind turbine comprising a vertically arranged support; a toroidal body arranged horizontally and coaxially around said support; a plurality of connection elements which extends radially to connect the support to the toroidal body, ...