In mathematics and computing, Fibonacci coding is a universal code which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end.
The Fibonacci code is closely related to the Zeckendorf representation, a positional numeral system that uses Zeckendorf's theorem and has the property that no number has a representation with consecutive 1s. The Fibonacci code word for a particular integer is exactly the integer's Zeckendorf representation with the order of its digits reversed and an additional "1" appended to the end.
For a number , if represent the digits of the code word representing then we have:
where F(i) is the ith Fibonacci number, and so F(i+2) is the ith distinct Fibonacci number starting with . The last bit is always an appended bit of 1 and does not carry place value.
It can be shown that such a coding is unique, and the only occurrence of "11" in any code word is at the end i.e. d(k−1) and d(k). The penultimate bit is the most significant bit and the first bit is the least significant bit. Also leading zeros cannot be omitted as they can in e.g. decimal numbers.
The first few Fibonacci codes are shown below, and also their so-called implied probability, the value for each number that has a minimum-size code in Fibonacci coding.
To encode an integer N:
Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.
If the number subtracted was the ith Fibonacci number F(i), put a 1 in place i−2 in the code word (counting the left most digit as place 0).
Repeat the previous steps, substituting the remainder for N, until a remainder of 0 is reached.
Place an additional 1 after the rightmost digit in the code word.
To decode a code word, remove the final "1", assign the remaining the values 1,2,3,5,8,13... (the Fibonacci numbers) to the bits in the code word, and sum the values of the "1" bits.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
In mathematics, negafibonacci coding is a universal code which encodes nonzero integers into binary code words. It is similar to Fibonacci coding, except that it allows both positive and negative integers to be represented. All codes end with "11" and have no "11" before the end. To encode a nonzero integer X: Calculate the largest (or smallest) encodeable number with N bits by summing the odd (or even) negafibonacci numbers from 1 to N.
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.
Utilization of edge devices has exploded in the last decade, with such use cases as wearable devices, autonomous driving, and smart homes. As their ubiquity grows, so do expectations of their capabilities. Simultaneously, their formfactor and use cases lim ...
Motivated by the presence of Ising transitions that take place entirely in the singlet sector of frustrated spin-1/2 ladders and spin-1 chains, we study two types of effective dimer models on ladders, a quantum dimer model and a quantum loop model. Buildin ...
2019
,
Binomial heaps are data structures implemented as a collection of binomial trees, (A binomial tree of order K can be constructed from two trees of order (K-1)). They can implement several methods: Min, Insert, Union, ExtractMin, DecreaseKey and Delete. Fib ...