Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G protein-coupled somatostatin receptors and inhibition of the release of numerous secondary hormones. Somatostatin inhibits insulin and glucagon secretion. Somatostatin has two active forms produced by the alternative cleavage of a single preproprotein: one consisting of 14 amino acids (shown in infobox to right), the other consisting of 28 amino acids. Among the vertebrates, there exist six different somatostatin genes that have been named SS1, SS2, SS3, SS4, SS5 and SS6. Zebrafish have all six. The six different genes, along with the five different somatostatin receptors, allow somatostatin to possess a large range of functions. Humans have only one somatostatin gene, SST. Synonyms of "somatostatin" include: growth hormone–inhibiting hormone (GHIH) growth hormone release–inhibiting hormone (GHRIH) somatotropin release–inhibiting factor (SRIF) somatotropin release–inhibiting hormone (SRIH) Somatostatin is secreted by delta cells at several locations in the digestive system, namely the pyloric antrum, the duodenum and the pancreatic islets. Somatostatin released in the pyloric antrum travels via the portal venous system to the heart, then enters the systemic circulation to reach the locations where it will exert its inhibitory effects. In addition, somatostatin release from delta cells can act in a paracrine manner. In the stomach, somatostatin acts directly on the acid-producing parietal cells via a G-protein coupled receptor (which inhibits adenylate cyclase, thus effectively antagonising the stimulatory effect of histamine) to reduce acid secretion. Somatostatin can also indirectly decrease stomach acid production by preventing the release of other hormones, including gastrin and histamine which effectively slows down the digestive process.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-321: Morphology II
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Related lectures (8)
Development of Central Nervous System
Covers the development of the central nervous system and the secretion of growth hormone, along with the treatment of acromegaly using somatostatin analogs.
Growth Hormone Regulation: Physiology and Signaling
Explores the regulation and signaling of growth hormone, including physiological effects and intracellular pathways.
Growth Hormone: Physiology and Pathologies
Explores the physiology and pathologies of growth hormone and insulin-like growth factor 1, including acromegaly, gigantism, and various types of dwarfism.
Show more
Related publications (26)
Related concepts (23)
Peptide hormone
Peptide hormones are hormones whose molecules are peptides. Peptide hormones have shorter amino acid chain lengths than protein hormones. These hormones have an effect on the endocrine system of animals, including humans. Most hormones can be classified as either amino acid–based hormones (amine, peptide, or protein) or steroid hormones. The former are water-soluble and act on the surface of target cells via second messengers; the latter, being lipid-soluble, move through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei.
Pituitary adenoma
Pituitary adenomas are tumors that occur in the pituitary gland. Most pituitary tumors are benign, approximately 35% are invasive and just 0.1% to 0.2% are carcinomas. Pituitary adenomas represent from 10% to 25% of all intracranial neoplasms and the estimated prevalence rate in the general population is approximately 17%. Non-invasive and non-secreting pituitary adenomas are considered to be benign in the literal as well as the clinical sense; however a recent meta-analysis (Fernández-Balsells, et al.
Growth hormone–releasing hormone
Growth hormone–releasing hormone (GHRH), also known as somatocrinin or by several other names in its endogenous forms and as somatorelin (INN) in its pharmaceutical form, is a releasing hormone of growth hormone (GH). It is a 44-amino acid peptide hormone produced in the arcuate nucleus of the hypothalamus. GHRH first appears in the human hypothalamus between 18 and 29 weeks of gestation, which corresponds to the start of production of growth hormone and other somatotropes in fetuses.
Show more
Related MOOCs (2)
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.