Polyurethane (ˌpɒliˈjʊərəˌθeɪn,_-jʊəˈrɛθeɪn; often abbreviated PUR and PU) refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.
A polyurethane is typically produced by reacting an isocyanate with a polyol. Since a polyurethane contains two types of monomers, which polymerize one after the other, they are classed as alternating copolymers. Both the isocyanates and polyols used to make a polyurethane contain two or more functional groups per molecule.
Global production in 2019 was 25 million metric tonnes, accounting for about 6% of all polymers produced in that year. Polyurethane is a commodity plastic.
Otto Bayer and his coworkers at IG Farben in Leverkusen, Germany, first made polyurethanes in 1937. The new polymers had some advantages over existing plastics that were made by polymerizing olefins or by polycondensation, and were not covered by patents obtained by Wallace Carothers on polyesters. Early work focused on the production of fibers and flexible foams and PUs were applied on a limited scale as aircraft coating during World War II. Polyisocyanates became commercially available in 1952, and production of flexible polyurethane foam began in 1954 by combining toluene diisocyanate (TDI) and polyester polyols. These materials were also used to produce rigid foams, gum rubber, and elastomers. Linear fibers were produced from hexamethylene diisocyanate (HDI) and 1,4-Butanediol (BDO).
DuPont introduced polyethers, specifically poly(tetramethylene ether) glycol, in 1956.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides a basic foundation in organic
chemistry and polymer chemistry, including chemical nomenclature of organic compounds and polymers, an understanding of chemical structures, chemical
This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes,
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Explores dimethyl carbonate production as a green alternative to phosgene, emphasizing its advantages and environmental benefits over traditional methods.
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
Paint is a liquid pigment that, after application to a solid material, and allowed to dry, adds a film-like layer to protect, add color, or provide texture. Paint can be made in many colors—and in many different types. Most paints are either oil-based or water-based, and each has distinct characteristics. For one, it is illegal in most municipalities to discard oil-based paint down household drains or sewers. Clean-up solvents are also different for water-based paint than oil-based paint.
Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane. Epoxy resins may be reacted (cross-linked) either with themselves through catalytic homopolymerisation, or with a wide range of co-reactants including polyfunctional amines, acids (and acid anhydrides), phenols, alcohols and thiols (sometimes called mercaptans).
After decades of technological advancements, high-speed atomic force microscopy (HS-AFM) has emerged as a powerful technique for visualizing dynamic processes. At the nanoscale, the AFM provides valuable insights into the sample by sensing minute interacti ...
Developing sustainable, recyclable, and biodegradable elastomers with the mechanical properties comparable to commercial polymers presents a formidable challenge. To this end, we synthesize a kind of mechanically robust elastomers cross -linked by acetoace ...
The present invention relates to a compound of the general formula (I), (II) and (III), more specifically of formula (Ia), (Ib), (Ic)wherein R11 and R12 or R21 and R22 or R31 and R32 are both hydrogen or form together with CHR50 a cyclic moiety or one of R ...