Concept

Inverted sugar syrup

Summary
Inverted sugar syrup, also called invert syrup, invert sugar, simple syrup, sugar syrup, sugar water, bar syrup, syrup USP, or sucrose inversion, is a syrup mixture of the monosaccharides glucose and fructose, that is made by hydrolytic saccharification of the disaccharide sucrose. This mixture's optical rotation is opposite to that of the original sugar, which is why it is called an invert sugar. It is 1.3x sweeter than table sugar, and foods that contain invert sugar retain moisture better and crystallize less easily than do those that use table sugar instead. Bakers, who call it invert syrup, may use it more than other sweeteners. Inverted sugar syrup can be made without acids or enzymes by heating it up alone: two parts granulated sugar and one part water, simmered for five to seven minutes, will be partly inverted. The amount of water can be increased to increase the time it takes to reach the desired final temperature, and increasing the time increases the amount of inversion that occurs. In general, higher final temperatures result in thicker syrups, and lower final temperatures, in thinner ones. Commercially prepared enzyme-catalyzed solutions are inverted at . The optimum pH for inversion is 5.0. Invertase is added at a rate of about 0.15% of the syrup's weight, and inversion time will be about 8 hours. When completed the syrup temperature is raised to inactivate the invertase, but the syrup is concentrated in a vacuum evaporator to preserve color. Though inverted sugar syrup can be made by heating table sugar in water alone, the reaction can be sped up by adding lemon juice, cream of tartar, or other catalysts, often without changing the flavor noticeably. Common sugar can be inverted quickly by mixing sugar and citric acid or cream of tartar at a ratio of about 1000:1 by weight and adding water. If lemon juice which is about five percent citric acid by weight is used instead then the ratio becomes 50:1. Such a mixture, heated to and added to another food, prevents crystallization without tasting sour.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.