Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutrino detectors, such as the first detection of antineutrinos in the Cowan–Reines neutrino experiment, or in neutrino experiments such as KamLAND and Borexino. It is an essential process to experiments involving low-energy neutrinos (< 60 MeV) such as those studying neutrino oscillation, reactor neutrinos, sterile neutrinos, and geoneutrinos. The IBD reaction can only be used to detect antineutrinos (rather than normal matter neutrinos, such as from the Sun) due to lepton conservation. Inverse beta decay proceeds as _electron antineutrino + _proton → _positron + _neutron, where an electron antineutrino (_electron antineutrino) interacts with a proton (_proton) to produce a positron (_positron) and a neutron (_neutron). The IBD reaction can only be initiated when the antineutrino possesses at least 1.806 MeV of kinetic energy (called the threshold energy). This threshold energy is due to a difference in mass between the products (_positron and _neutron) and the reactants (_electron antineutrino and _proton) and also slightly due to a relativistic mass effect on the antineutrino. Most of the antineutrino energy is distributed to the positron due to its small mass relative to the neutron. The positron promptly undergoes matter–antimatter annihilation after creation and yields a flash of light with energy calculated as Evis = 511 keV + 511 keV + E_electron antineutrino − 1806 keV = E_electron antineutrino − 784 keV, where 511 keV is the electron and positron rest energy, Evis is the visible energy from the reaction, and E_electron antineutrino is the antineutrino kinetic energy. After the prompt positron annihilation, the neutron undergoes neutron capture on an element in the detector, producing a delayed flash of 2.22 MeV if captured on a proton.
Lesya Shchutska, Alexey Boyarsky, Oleg Ruchayskiy, Marco Drewes, Inar Timiryasov, Jean-Loup Tastet, Juraj Klaric
, , , , , , , , , , , , , , , ,
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer