Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutrino detectors, such as the first detection of antineutrinos in the Cowan–Reines neutrino experiment, or in neutrino experiments such as KamLAND and Borexino. It is an essential process to experiments involving low-energy neutrinos (< 60 MeV) such as those studying neutrino oscillation, reactor neutrinos, sterile neutrinos, and geoneutrinos. The IBD reaction can only be used to detect antineutrinos (rather than normal matter neutrinos, such as from the Sun) due to lepton conservation. Inverse beta decay proceeds as _electron antineutrino + _proton → _positron + _neutron, where an electron antineutrino (_electron antineutrino) interacts with a proton (_proton) to produce a positron (_positron) and a neutron (_neutron). The IBD reaction can only be initiated when the antineutrino possesses at least 1.806 MeV of kinetic energy (called the threshold energy). This threshold energy is due to a difference in mass between the products (_positron and _neutron) and the reactants (_electron antineutrino and _proton) and also slightly due to a relativistic mass effect on the antineutrino. Most of the antineutrino energy is distributed to the positron due to its small mass relative to the neutron. The positron promptly undergoes matter–antimatter annihilation after creation and yields a flash of light with energy calculated as Evis = 511 keV + 511 keV + E_electron antineutrino − 1806 keV = E_electron antineutrino − 784 keV, where 511 keV is the electron and positron rest energy, Evis is the visible energy from the reaction, and E_electron antineutrino is the antineutrino kinetic energy. After the prompt positron annihilation, the neutron undergoes neutron capture on an element in the detector, producing a delayed flash of 2.22 MeV if captured on a proton.
Lesya Shchutska, Alexey Boyarsky, Oleg Ruchayskiy, Marco Drewes, Inar Timiryasov, Jean-Loup Tastet, Juraj Klaric
Lesya Shchutska, Yiming Li, Yi Zhang, Alexey Boyarsky, Raffaele Tito D'Agnolo, Enrico Bertuzzo, Wei Liu, Ji Hyun Kim, Zheng Wang, Jing Li, Wenjing Wu, Francesco Cerutti, Martin Bauer, Patrick Foldenauer, Karan Kumar, Saurabh Nangia, Emanuele Copello
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,