Concept

Arthropod leg

The arthropod leg is a form of jointed appendage of arthropods, usually used for walking. Many of the terms used for arthropod leg segments (called podomeres) are of Latin origin, and may be confused with terms for bones: coxa (meaning hip, plural coxae), trochanter, femur (plural femora), tibia (plural tibiae), tarsus (plural tarsi), ischium (plural ischia), metatarsus, carpus, dactylus (meaning finger), patella (plural patellae). Homologies of leg segments between groups are difficult to prove and are the source of much argument. Some authors posit up to eleven segments per leg for the most recent common ancestor of extant arthropods but modern arthropods have eight or fewer. It has been argued that the ancestral leg need not have been so complex, and that other events, such as successive loss of function of a Hox-gene, could result in parallel gains of leg segments. In arthropods, each of the leg segments articulates with the next segment in a hinge joint and may only bend in one plane. This means that a greater number of segments is required to achieve the same kinds of movements that are possible in vertebrate animals, which have rotational ball-and-socket joints at the base of the fore and hind limbs. The appendages of arthropods may be either biramous or uniramous. A uniramous limb comprises a single series of segments attached end-to-end. A biramous limb, however, branches into two, and each branch consists of a series of segments attached end-to-end. The external branch (ramus) of the appendages of crustaceans is known as the exopod or exopodite, while the internal branch is known as the endopod or endopodite. Other structures aside from the latter two are termed exites (outer structures) and endites (inner structures). Exopodites can be easily distinguished from exites by the possession of internal musculature. The exopodites can sometimes be missing in some crustacean groups (amphipods and isopods), and they are completely absent in insects. The legs of insects and myriapods are uniramous.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (4)
BIOENG-456: Controlling behavior in animals and robots
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
ME-482: Biomechanics of the musculoskeletal system
The basis for a mechanical description of the musculoskeletal system are presented. This description is based on the concepts of solid mechanics, physiology and anatomy of the musculoskeletal system.
BIO-320: Morphology I
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie), microscopique (histologie) du corps humain.
Show more
Related publications (36)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.