Summary
In computer science, program synthesis is the task to construct a program that provably satisfies a given high-level formal specification. In contrast to program verification, the program is to be constructed rather than given; however, both fields make use of formal proof techniques, and both comprise approaches of different degrees of automatization. In contrast to automatic programming techniques, specifications in program synthesis are usually non-algorithmic statements in an appropriate logical calculus. During the Summer Institute of Symbolic Logic at Cornell University in 1957, Alonzo Church defined the problem to synthesize a circuit from mathematical requirements. Even though the work only refers to circuits and not programs, the work is considered to be one of the earliest descriptions of program synthesis and some researchers refer to program synthesis as "Church's Problem". In the 1960s, a similar idea for an "automatic programmer" was explored by researchers in artificial intelligence. Since then, various research communities considered the problem of program synthesis. Notable works include the 1969 automata-theoretic approach by Büchi and Landweber, and the works by Manna and Waldinger (c. 1980). The development of modern high-level programming languages can also be understood as a form of program synthesis. The early 21st century has seen a surge of practical interest in the idea of program synthesis in the formal verification community and related fields. Armando Solar-Lezama showed that it is possible to encode program synthesis problems in Boolean logic and use algorithms for the Boolean satisfiability problem to automatically find programs. In 2013, a unified framework for program synthesis problems was proposed by researchers at UPenn, UC Berkeley, and MIT. Since 2014 there has been a yearly program synthesis competition comparing the different algorithms for program synthesis in a competitive event, the Syntax-Guided Synthesis Competition or SyGuS-Comp. Still, the available algorithms are only able to synthesize small programs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.