In mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed. All of these generalizations are contained in .
The moduli stack of elliptic curves is a smooth separated Deligne–Mumford stack of finite type over , but is not a scheme as elliptic curves have non-trivial automorphisms.
There is a proper morphism of to the affine line, the coarse moduli space of elliptic curves, given by the j-invariant of an elliptic curve.
It is a classical observation that every elliptic curve over is classified by its periods. Given a basis for its integral homology and a global holomorphic differential form (which exists since it is smooth and the dimension of the space of such differentials is equal to the genus, 1), the integralsgive the generators for a -lattice of rank 2 inside of pg 158. Conversely, given an integral lattice of rank inside of , there is an embedding of the complex torus into from the Weierstrass P function pg 165. This isomorphic correspondence is given byand holds up to homothety of the lattice , which is the equivalence relationIt is standard to then write the lattice in the form for , an element of the upper half-plane, since the lattice could be multiplied by , and both generate the same sublattice. Then, the upper half-plane gives a parameter space of all elliptic curves over . There is an additional equivalence of curves given by the action of thewhere an elliptic curve defined by the lattice is isomorphic to curves defined by the lattice given by the modular actionThen, the moduli stack of elliptic curves over is given by the stack quotientNote some authors construct this moduli space by instead using the action of the Modular group .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, a level structure on a space X is an extra structure attached to X that shrinks or eliminates the automorphism group of X, by demanding automorphisms to preserve the level structure; attaching a level structure is often phrased as rigidifying the geometry of X. In applications, a level structure is used in the construction of moduli spaces; a moduli space is often constructed as a quotient. The presence of automorphisms poses a difficulty to forming a quotient; thus introducing level structures helps overcome this difficulty.
In number theory and algebraic geometry, a modular curve Y(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curves X(Γ) which are compactifications obtained by adding finitely many points (called the cusps of Γ) to this quotient (via an action on the extended complex upper-half plane).
In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. The modular group Γ is the group of linear fractional transformations of the upper half of the complex plane, which have the form where a, b, c, d are integers, and ad − bc = 1.
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem—upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the beh ...
2024
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...