Concept

Level structure (algebraic geometry)

In algebraic geometry, a level structure on a space X is an extra structure attached to X that shrinks or eliminates the automorphism group of X, by demanding automorphisms to preserve the level structure; attaching a level structure is often phrased as rigidifying the geometry of X. In applications, a level structure is used in the construction of moduli spaces; a moduli space is often constructed as a quotient. The presence of automorphisms poses a difficulty to forming a quotient; thus introducing level structures helps overcome this difficulty. There is no single definition of a level structure; rather, depending on the space X, one introduces the notion of a level structure. The classic one is that on an elliptic curve (see #Example: an abelian scheme). There is a level structure attached to a formal group called a Drinfeld level structure, introduced in . Classically, level structures on elliptic curves are given by a lattice containing the defining lattice of the variety. From the moduli theory of elliptic curves, all such lattices can be described as the lattice for in the upper-half plane. Then, the lattice generated by gives a lattice which contains all -torsion points on the elliptic curve denoted . In fact, given such a lattice is invariant under the action on , wherehence it gives a point in called the moduli space of level N structures of elliptic curves , which is a modular curve. In fact, this moduli space contains slightly more information: the Weil pairinggives a point in the -th roots of unity, hence in . Let be an abelian scheme whose geometric fibers have dimension g. Let n be a positive integer that is prime to the residue field of each s in S. For n ≥ 2, a level n-structure is a set of sections such that for each geometric point , form a basis for the group of points of order n in , is the identity section, where is the multiplication by n. See also: modular curve#Examples, moduli stack of elliptic curves.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.