Power-to-X (also P2X and P2Y) is a number of electricity conversion, energy storage, and reconversion pathways that use surplus electric power, typically during periods where fluctuating renewable energy generation exceeds load.
Power-to-X conversion technologies allow for the decoupling of power from the electricity sector for use in other sectors (such as transport or chemicals), possibly using power that has been provided by additional investments in generation. The term is widely used in Germany and may have originated there.
The X in the terminology can refer to one of the following: power-to-ammonia, power-to-chemicals, power-to-fuel, power-to-gas (power-to-hydrogen, power-to-methane) power-to-liquid (synthetic fuel), power to food, power-to-heat, and power-to-power. Electric vehicle charging, space heating and cooling, and water heating can be shifted in time to match generation, forms of demand response that can be called power-to-mobility and power-to-heat.
Collectively power-to-X schemes which use surplus power fall under the heading of flexibility measures and are particularly useful in energy systems with high shares of renewable generation and/or with strong decarbonization targets. A large number of pathways and technologies are encompassed by the term. In 2016 the German government funded a €30 million first-phase research project into power-to-X options.
Surplus electric power can be converted to other forms of energy for storage and reconversion.
Direct current electrolysis of water (efficiency 80–85% at best) can be used to produce hydrogen which can, in turn, be converted to methane (CH4) via methanation. Another possibility is converting the hydrogen, along with CO2 to methanol. Both these fuels can be stored and used to produce electricity again, hours to months later. Reconversion technologies include gas turbines, combined cycle plants, reciprocating engines and fuel cells.
Power-to-power refers to the round-trip reconversion efficiency. For hydrogen storage, the round-trip efficiency remains limited at 35–50%.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
An energy transition (or energy system transformation) is a significant structural change in an energy system regarding supply and consumption. Currently, a transition to sustainable energy (mostly renewable energy) is underway to limit climate change. It is also called renewable energy transition. The current transition is driven by a recognition that global greenhouse-gas emissions must be drastically reduced. This process involves phasing-down fossil fuels and re-developing whole systems to operate on low carbon electricity.
A low-carbon economy (LCE) or decarbonised economy is an economy based on energy sources that produce low levels of greenhouse gas (GHG) emissions. GHG emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. Continued emission of greenhouse gases will cause long-lasting changes around the world, increasing the likelihood of severe, pervasive, and irreversible effects for people and ecosystems.
Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Most definitions of sustainable energy include considerations of environmental aspects such as greenhouse gas emissions and social and economic aspects such as energy poverty. Renewable energy sources such as wind, hydroelectric power, solar, and geothermal energy are generally far more sustainable than fossil fuel sources.
Biorefineries hold the potential to provide products and energy carriers at reduced environmental impact compared to their fossil-based counterparts. Thus, they can contribute to the decarbonization of sectors in which electrification of demands is challen ...
London2023
, ,
To support the decarbonisation of the power sector and offset the volatility of a system with high levels of renewables, there is growing interest in residential Demand-Side Management (DSM) solutions. Traditional DSM strategies require consumers to active ...
A shift from fossil-based energy and products to more sustainable alternatives is essential to reduce greenhouse gas emissions and associated climate change impacts. Biomass represents a promising alternative for providing fuels and carbon-based products w ...