A low-carbon economy (LCE) or decarbonised economy is an economy based on energy sources that produce low levels of greenhouse gas (GHG) emissions. GHG emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. Continued emission of greenhouse gases will cause long-lasting changes around the world, increasing the likelihood of severe, pervasive, and irreversible effects for people and ecosystems. Shifting to a low-carbon economy on a global scale could bring substantial benefits both for developed and developing countries. Many countries around the world are designing and implementing low-emission development strategies (LEDS). These strategies seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas emissions and increasing resilience to the effects of climate change.
Globally implemented low-carbon economies are therefore proposed as a precursor to the more advanced, zero-carbon economy. The GeGaLo index of geopolitical gains and losses assesses how the geopolitical position of 156 countries may change if the world fully transitions to renewable energy resources. Former fossil fuel exporters are expected to lose power, while the positions of former fossil fuel importers and countries rich in renewable energy resources is expected to strengthen.
Nations may seek to become low-carbon or decarbonised economies as a part of a national climate change mitigation strategy. A comprehensive strategy to mitigate climate change is through carbon neutrality.
The aim of a LCE is to integrate all aspects of itself from its manufacturing, agriculture, transportation, and power generation, etc. around technologies that produce energy and materials with little GHG emission, and, thus, around populations, buildings, machines, and devices that use those energies and materials efficiently, and, dispose of or recycle its wastes so as to have a minimal output of GHGs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
An energy transition (or energy system transformation) is a significant structural change in an energy system regarding supply and consumption. Currently, a transition to sustainable energy (mostly renewable energy) is underway to limit climate change. It is also called renewable energy transition. The current transition is driven by a recognition that global greenhouse-gas emissions must be drastically reduced. This process involves phasing-down fossil fuels and re-developing whole systems to operate on low carbon electricity.
A renewable resource (also known as a flow resource) is a natural resource which will replenish to replace the portion depleted by usage and consumption, either through natural reproduction or other recurring processes in a finite amount of time in a human time scale. When the recovery rate of resources is unlikely to ever exceed a human time scale, these are called perpetual resources. Renewable resources are a part of Earth's natural environment and the largest components of its ecosphere.
Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Most definitions of sustainable energy include considerations of environmental aspects such as greenhouse gas emissions and social and economic aspects such as energy poverty. Renewable energy sources such as wind, hydroelectric power, solar, and geothermal energy are generally far more sustainable than fossil fuel sources.
Qu'est-ce qui détermine les prix fonciers et les prix immobiliers en général? Comprenez les liens de ces prix avec les taux d'intérêt, les rentes foncières et les loyers. Un cours d'économie pour les
Qu'est-ce qui détermine les prix fonciers et les prix immobiliers en général? Comprenez les liens de ces prix avec les taux d'intérêt, les rentes foncières et les loyers. Un cours d'économie pour les
Quels sont les liens entre les prix fonciers, les prix immobiliers et les prix pour l'usage des immeubles? Est-ce que les prix immobiliers permettent de comprendre les prix fonciers? Ou l'inverse? Que
Explores planetary boundaries and stranded fossil fuel assets' financial risks.
Explores resilience in energy systems, addressing challenges and solutions for ensuring a sustainable energy supply.
Explores China's journey towards green energy and the environmental challenges it faces in achieving a sustainable economy.
The transition to a low-carbon economy can create new job opportunities but may cause job displacement in some sectors that heavily rely on fossil fuels. In order to gain a balanced appraisal in understanding the broader consequences of climate policies, t ...
Renewable energy sources offer a promising solution for mitigating sustainability and CO2 emissions-related issues due to their vast energy generation capacity. They enable hydrogen production via water electrolysis, as well as carbon capture and utilizati ...
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer-Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for tran ...