In chemical thermodynamics, an endergonic reaction (; also called a heat absorbing nonspontaneous reaction or an unfavorable reaction) is a chemical reaction in which the standard change in free energy is positive, and an additional driving force is needed to perform this reaction. In layman's terms, the total amount of useful energy is negative (it takes more energy to start the reaction than what is received out of it) so the total energy is a net negative result, as opposed to a net positive result in an exergonic reaction. Another way to phrase this is that useful energy must be absorbed from the surroundings into the workable system for the reaction to happen.
Under constant temperature and constant pressure conditions, this means that the change in the standard Gibbs free energy would be positive,
for the reaction at standard state (i.e. at standard pressure (1 bar), and standard concentrations (1 molar) of all the reagents).
In metabolism, an endergonic process is anabolic, meaning that energy is stored; in many such anabolic processes, energy is supplied by coupling the reaction to adenosine triphosphate (ATP) and consequently resulting in a high energy, negatively charged organic phosphate and positive adenosine diphosphate.
The equilibrium constant for the reaction is related to ΔG° by the relation:
where T is the absolute temperature and R is the gas constant. A positive value of ΔG° therefore implies
so that starting from molar stoichiometric quantities such a reaction would move backwards toward equilibrium, not forwards.
Nevertheless, endergonic reactions are quite common in nature, especially in biochemistry and physiology. Examples of endergonic reactions in cells include protein synthesis, and the Na+/K+ pump which drives nerve conduction and muscle contraction.
All physical and chemical systems in the universe follow the second law of thermodynamics and proceed in a downhill, i.e., exergonic, direction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
The main focus of the lecture is on reactive hazards (thermal process safety) + introduction to explosion protection. While being based on theory, the lecture is oriented towards industrial practice.
In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). This indicates a spontaneous reaction if the system is closed and initial and final temperatures are the same. For processes that take place in a closed system at constant pressure and temperature, the Gibbs free energy is used, whereas the Helmholtz energy is relevant for processes that take place at constant volume and temperature.
An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs free energy change is negative (∆G < 0). "Exergonic" (from the prefix exo-, derived for the Greek word ἔξω exō, "outside" and the suffix -ergonic, derived from the Greek word ἔργον ergon, "work") means "releasing energy in the form of work".
In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative." Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC defines as "... a reaction for which the overall standard Gibbs energy change ΔG⚬ is negative." A strongly exothermic reaction will usually also be exergonic because ΔH⚬ makes a major contribution to ΔG⚬. Most of the spectacular chemical reactions that are demonstrated in classrooms are exothermic and exergonic.
The conversion of intermittent renewable energy resources in the form of chemical bond, such as hydrogen production from electrochemical water splitting, is a promising way to satisfy the future global energy demand and address the environmental issues. Th ...
Chemical reaction dynamics are studied to monitor and understand the concerted motion of several atoms while they rearrange from reactants to products. When the number of atoms involved increases, the number of pathways, transition states and product chann ...
NATURE PORTFOLIO2021
, , , ,
Catalytic hydrogenation and oxidative dehydrogenation of N-heterocycles to produce tetrahydroquinoline and quinoline derivatives are important reactions of particular importance in the agrochemical and pharmaceutical industries. Herein, we report earth-abu ...