Summary
A positioning system is a system for determining the position of an object in space. One of the most well-known and commonly used positioning systems is the Global Positioning System (GPS). Positioning system technologies exist ranging from worldwide coverage with meter accuracy to workspace coverage with sub-millimeter accuracy. Interplanetary-radio communication systems not only communicate with spacecraft, but they are also used to determine their position. Radar can track targets near the Earth, but spacecraft in deep space must have a working transponder on board to echo a radio signal back. Orientation information can be obtained using star trackers. Global navigation satellite system Global navigation satellite systems (GNSS) allow specialized radio receivers to determine their 3-D space position, as well as time, with an accuracy of 2–20 metres or tens of nanoseconds. Currently deployed systems use microwave signals that can only be received reliably outdoors and that cover most of Earth's surface, as well as near-Earth space. The existing and planned systems are: Global Positioning System – US military system, fully operational since 1995 GLONASS – Russian military system, fully operational since October 2011 Galileo – European Community, fully operational since December 2019 Beidou navigation system – China, fully operational since June 2020 Indian Regional Navigation Satellite System – a planned project in India Networks of land-based positioning transmitters allow specialized radio receivers to determine their 2-D position on the surface of the Earth. They are generally less accurate than GNSS because their signals are not entirely restricted to line-of-sight propagation, and they have only regional coverage. However, they remain useful for special purposes and as a backup where their signals are more reliably received, including underground and indoors, and receivers can be built that consume very low battery power. LORAN is an example of such a system.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
COM-430: Modern digital communications: a hands-on approach
This course complements the theoretical knowledge learned in PDC with more advanced topics such as OFDM, MIMO, fading channels, and GPS positioning. This knowledge is put into practice with hands-on e
ENV-548: Sensor orientation
Determination of spatial orientation (i.e. position, velocity, attitude) via integration of inertial sensors with satellite positioning. Prerequisite for many applications related to remote sensing, e
ENV-542: Advanced satellite positioning
All fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monito
Show more