A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a hypernova explosion or as a gamma ray burst. These black holes are also referred to as collapsars.
By the no-hair theorem, a black hole can only have three fundamental properties: mass, electric charge, and angular momentum. The angular momentum of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it.
The gravitational collapse of a star is a natural process that can produce a black hole. It is inevitable at the end of the life of a massive star when all stellar energy sources are exhausted. If the mass of the collapsing part of the star is below the Tolman–Oppenheimer–Volkoff (TOV) limit for neutron-degenerate matter, the end product is a compact star – either a white dwarf (for masses below the Chandrasekhar limit) or a neutron star or a (hypothetical) quark star. If the collapsing star has a mass exceeding the TOV limit, the crush will continue until zero volume is achieved and a black hole is formed around that point in space.
The maximum mass that a neutron star can possess (without becoming a black hole) is not fully understood. In 1939, it was estimated at 0.7 solar masses, called the TOV limit. In 1996, a different estimate put this upper mass in a range from 1.5 to 3 solar masses. The maximum observed mass of neutron stars is about for PSR J0740+6620 discovered in September, 2019.
In the theory of general relativity, a black hole could exist of any mass. The lower the mass, the higher the density of matter has to be in order to form a black hole. (See, for example, the discussion in Schwarzschild radius, the radius of a black hole.) There are no known stellar processes that can produce black holes with mass less than a few times the mass of the Sun. If black holes that small exist, they are most likely primordial black holes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A microquasar, the smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star. The matter being pulled from the companion star forms an accretion disk around the black hole. This accretion disk may become so hot, due to friction, that it begins to emit X-rays. The disk also projects narrow streams or "jets" of subatomic particles at near-light speed, generating a strong radio wave emission. In 1979, SS 433 became the first microquasar to be discovered.
A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter (also see animated examples). More restrictive definitions require that this common center of mass is not located within the interior of either object, in order to exclude the typical planet–satellite systems and planetary systems. The most common binary systems are binary stars and binary asteroid, but brown dwarfs, planets, neutron stars, black holes and galaxies can also form binaries.
The Virgo interferometer is a large Michelson interferometer designed to detect gravitational waves predicted by the general theory of relativity. It is located in Santo Stefano a Macerata, near the city of Pisa, Italy. The instrument's two arms are three kilometres long, hosting its mirrors and instrumentation inside an ultra-high vacuum. Virgo is hosted by the European Gravitational Observatory (EGO), a consortium founded by the French CNRS and Italian INFN.
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Introduce the students to general relativity and its classical tests.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Explores the composition, origin, and tail formation of comets, shedding light on the forces shaping their trajectories and their relevance to star formation.
We report the identification of 64 new candidates of compact galaxies, potentially hosting faint quasars with bolometric luminosities of L-bol = 10(43)-10(46) erg s(-1), residing in the reionization epoch within the redshift range of 6 less than or similar ...
We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of da ...
We study the effects of exceptionally light QCD axions on the stellar configuration of white dwarfs. At finite baryon density, the nonderivative coupling of the axion to nucleons displaces the axion from its invacuum minimum, which implies a reduction of t ...