In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral I,
Let X(u, v) be a parametric surface. Then the inner product of two tangent vectors is
where E, F, and G are the coefficients of the first fundamental form.
The first fundamental form may be represented as a symmetric matrix.
When the first fundamental form is written with only one argument, it denotes the inner product of that vector with itself.
The first fundamental form is often written in the modern notation of the metric tensor. The coefficients may then be written as gij:
The components of this tensor are calculated as the scalar product of tangent vectors X1 and X2:
for i, j = 1, 2. See example below.
The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as
The classical area element given by dA = du dv can be expressed in terms of the first fundamental form with the assistance of Lagrange's identity,
A spherical curve on the unit sphere in R3 may be parametrized as
Differentiating X(u,v) with respect to u and v yields
The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives.
so:
The equator of the unit sphere is a parametrized curve given by
with t ranging from 0 to 2pi. The line element may be used to calculate the length of this curve.
The area element may be used to calculate the area of the unit sphere.
The Gaussian curvature of a surface is given by
where L, M, and N are the coefficients of the second fundamental form.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Après avoir traité la théorie de base des courbes et surfaces dans le plan et l'espace euclidien,
nous étudierons certains chapitres choisis : surfaces minimales, surfaces à courbure moyenne constante
La géométrie riemannienne est un (peut-être le) chapitre central de la géométrie différentielle et de la géométriec ontemporaine en général. Le sujet est très riche et ce cours est une modeste introdu
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface.
In differential geometry, the second fundamental form (or shape tensor) is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by (read "two"). Together with the first fundamental form, it serves to define extrinsic invariants of the surface, its principal curvatures. More generally, such a quadratic form is defined for a smooth immersed submanifold in a Riemannian manifold. The second fundamental form of a parametric surface S in R3 was introduced and studied by Gauss.
In mathematics, the mean curvature of a surface is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space. The concept was used by Sophie Germain in her work on elasticity theory. Jean Baptiste Marie Meusnier used it in 1776, in his studies of minimal surfaces.
A fundamental form of magnon-phonon interaction is an intrinsic property of magnetic materials, the “magnetoelastic coupling.” This form of interaction has been the basis for describing magnetostrictive materials and their applications, where strain induce ...
2020
,
Energy transfer reactions occur in all areas of chemistry. One fundamental form of this is demonstrated by reactions in which an electronically excited atom transfers energy to a neutral, resulting in spontaneous ionisation, potentially combined with compl ...
2020
, ,
Within the sustainability discourse, resilience has been taken up more and more as a central boundary object. Resilience in principle has both static and dynamic elements to it, allowing a system to stay in an equilibrium without endangering its long-term ...