Concept

5-cell

Summary
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is the 4-simplex (Coxeter's polytope), the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The 5-cell is a 4-dimensional pyramid with a tetrahedral base and four tetrahedral sides. The regular 5-cell is bounded by five regular tetrahedra, and is one of the six regular convex 4-polytopes (the four-dimensional analogues of the Platonic solids). A regular 5-cell can be constructed from a regular tetrahedron by adding a fifth vertex one edge length distant from all the vertices of the tetrahedron. This cannot be done in 3-dimensional space. The regular 5-cell is a solution to the problem: Make 10 equilateral triangles, all of the same size, using 10 matchsticks, where each side of every triangle is exactly one matchstick, and none of the triangles and match sticks intersect one another. No solution exists in three dimensions. Pentachoron (5-point 4-polytope) Hypertetrahedron (4-dimensional analogue of the tetrahedron) 4-simplex (4-dimensional simplex) Tetrahedral pyramid (4-dimensional hyperpyramid with a tetrahedral base) Pentatope Pentahedroid (Henry Parker Manning) Pen (Jonathan Bowers: for pentachoron) The 5-cell is the 4-dimensional simplex, the simplest possible 4-polytope. As such it is the first in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). A 5-cell is formed by any five points which are not all in the same hyperplane (as a tetrahedron is formed by any four points which are not all in the same plane, and a triangle is formed by any three points which are not all in the same line). Any five vertices in five different hyperplanes constitute a 5-cell, though not usually a regular 5-cell.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.