Summary
Fungicides are pesticides used to kill parasitic fungi or their spores. They are most commonly chemical compounds, but may include biocontrols and fungistatics. Fungi can cause serious damage in agriculture, resulting in critical losses of yield, quality, and profit. Fungicides are used both in agriculture and to fight fungal infections in animals. Fungicides are also used to control oomycetes, which are not taxonomically/genetically fungi, although sharing similar methods of infecting plants. Fungicides can either be contact, translaminar or systemic. Contact fungicides are not taken up into the plant tissue and protect only the plant where the spray is deposited. Translaminar fungicides redistribute the fungicide from the upper, sprayed leaf surface to the lower, unsprayed surface. Systemic fungicides are taken up and redistributed through the xylem vessels. Few fungicides move to all parts of a plant. Some are locally systemic, and some move upward. Most fungicides that can be bought retail are sold in liquid form. A very common active ingredient is sulfur, present at 0.08% in weaker concentrates, and as high as 0.5% for more potent fungicides. Fungicides in powdered form are usually around 90% sulfur and are very toxic. Other active ingredients in fungicides include neem oil, rosemary oil, jojoba oil, the bacterium Bacillus subtilis, and the beneficial fungus Ulocladium oudemansii. Fungicide residues have been found on food for human consumption, mostly from post-harvest treatments. Some fungicides are dangerous to human health, such as vinclozolin, which has now been removed from use. Ziram is also a fungicide that is toxic to humans with long-term exposure, and fatal if ingested. A number of fungicides are also used in human health care. Fungicides can be classified according to their mechanism of action (MOA), specifically the biological process or target site they block. The Fungicide Resistance Action Committee (FRAC) assigns chemicals into classes according to MOA and subdivides these according to similarities in their structure.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (9)

Antimicrobial susceptibility testing with integrated photonic crystal optical tweezers

Nicolas Villa

The abusive use of antimicrobial drugs during the last eighty years has favoured the natural selection of resistant pathogens able to neutralise drugs efficiently. Nowadays, antimicrobial resistance contributes to millions of deaths yearly, threatens the e ...
EPFL2023

Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis

Mustafa Demir

Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted ...
MICROBIOLOGICAL SOCIETY KOREA2020

Echovirus 11 mutants with increased resistance to common water disinfectants

Tamar Kohn, Anna Carratala Ripolles, Virginie Bachmann, Qingxia Zhong

Common water disinfectants like chlorine have been reported to select for resistant viruses. Yet, only little attention has been devoted to characterizing disinfection resistance. The goal of this study was to produce disinfectant-resistant viruses and to ...
2016
Show more
Related concepts (17)
Ion
An ion (ˈaɪ.ɒn,_-ən) is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons while an anion is a negatively charged ion with more electrons than protons.
Phytophthora infestans
Phytophthora infestans is an oomycete or water mold, a fungus-like microorganism that causes the serious potato and tomato disease known as late blight or potato blight. Early blight, caused by Alternaria solani, is also often called "potato blight". Late blight was a major culprit in the 1840s European, the 1845–1852 Irish, and the 1846 Highland potato famines. The organism can also infect some other members of the Solanaceae.
Dermatophytosis
Dermatophytosis, also known as ringworm, is a fungal infection of the skin. Typically it results in a red, itchy, scaly, circular rash. Hair loss may occur in the area affected. Symptoms begin four to fourteen days after exposure. Multiple areas can be affected at a given time. About 40 types of fungus can cause ringworm. They are typically of the Trichophyton, Microsporum, or Epidermophyton type. Risk factors include using public showers, contact sports such as wrestling, excessive sweating, contact with animals, obesity, and poor immune function.
Show more