Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion (often abbreviated IC), a high-energy electron is emitted from the excited atom, but not from the nucleus. For this reason, the high-speed electrons resulting from internal conversion are not called beta particles, since the latter come from beta decay, where they are newly created in the nuclear decay process.
IC is possible whenever gamma decay is possible, except if the atom is fully ionized. In IC, the atomic number does not change, and thus there is no transmutation of one element to another.
Since an electron is lost from the atom, a hole appears in an electron shell which is subsequently filled by other electrons that descend to that empty, lower energy level, and in the process emit characteristic X-ray(s), Auger electron(s), or both. The atom thus emits high-energy electrons and X-ray photons, none of which originate in that nucleus. The atom supplied the energy needed to eject the electron, which in turn caused the latter events and the other emissions.
Since primary electrons from IC carry a fixed (large) part of the characteristic decay energy, they have a discrete energy spectrum, rather than the spread (continuous) spectrum characteristic of beta particles. Whereas the energy spectrum of beta particles plots as a broad hump, the energy spectrum of internally converted electrons plots as a single sharp peak (see example below).
In the quantum model of the electron, there is non-zero probability of finding the electron within the nucleus. In internal conversion, the wavefunction of an inner shell electron (usually an s electron) penetrates the nucleus. When this happens, the electron may couple to an excited energy state of the nucleus and take the energy of the nuclear transition directly, without an intermediate gamma ray being first produced.