Summary
Engineering tolerance is the permissible limit or limits of variation in: a physical dimension; a measured value or physical property of a material, manufactured object, system, or service; other measured values (such as temperature, humidity, etc.); in engineering and safety, a physical distance or space (tolerance), as in a truck (lorry), train or boat under a bridge as well as a train in a tunnel (see structure gauge and loading gauge); in mechanical engineering, the space between a bolt and a nut or a hole, etc. Dimensions, properties, or conditions may have some variation without significantly affecting functioning of systems, machines, structures, etc. A variation beyond the tolerance (for example, a temperature that is too hot or too cold) is said to be noncompliant, rejected, or exceeding the tolerance. A primary concern is to determine how wide the tolerances may be without affecting other factors or the outcome of a process. This can be by the use of scientific principles, engineering knowledge, and professional experience. Experimental investigation is very useful to investigate the effects of tolerances: Design of experiments, formal engineering evaluations, etc. A good set of engineering tolerances in a specification, by itself, does not imply that compliance with those tolerances will be achieved. Actual production of any product (or operation of any system) involves some inherent variation of input and output. Measurement error and statistical uncertainty are also present in all measurements. With a normal distribution, the tails of measured values may extend well beyond plus and minus three standard deviations from the process average. Appreciable portions of one (or both) tails might extend beyond the specified tolerance. The process capability of systems, materials, and products needs to be compatible with the specified engineering tolerances. Process controls must be in place and an effective Quality management system, such as Total Quality Management, needs to keep actual production within the desired tolerances.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
MICRO-301: Manufacturing technologies
This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes,
ME-107: Mechanical construction II (for MT)
Le cours de ME-107 vise à l'acquisition d'une solide culture technique de base en vue d'être capable de traiter des cas concrets de construction mécanique, via une revue des concepts, composants, et m
ME-102: Mechanical construction II (for ME)
Le cours de ME-102 vise à l'acquisition d'une solide culture technique de base en vue d'être capable de traiter des cas concrets de construction mécanique, via une revue des concepts, composants, et m
Show more
Related publications (10)