Sirolimus, also known as rapamycin and sold under the brand name Rapamune among others, is a macrolide compound that is used to coat coronary stents, prevent organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis, and treat perivascular epithelioid cell tumor (PEComa). It has immunosuppressant functions in humans and is especially useful in preventing the rejection of kidney transplants. It is a mechanistic target of rapamycin kinase (mTOR) inhibitor that inhibits activation of T cells and B cells by reducing their sensitivity to interleukin-2 (IL-2).
It is produced by the bacterium Streptomyces hygroscopicus and was isolated for the first time in 1972, from samples of Streptomyces hygroscopicus found on Easter Island. The compound was originally named rapamycin after the native name of the island, Rapa Nui. Sirolimus was initially developed as an antifungal agent. However, this use was abandoned when it was discovered to have potent immunosuppressive and antiproliferative properties due to its ability to inhibit mTOR. It was approved by the U.S. Food and Drug Administration (FDA) in September 1999. Hyftor was approved for treatment of facial angiofibroma in the European Union in May 2023.
Sirolimus is indicated for the prevention of organ transplant rejection and for the treatment of lymphangioleiomyomatosis (LAM).
Sirolimus (Fyarro), as protein-bound particles, is indicated for the treatment of adults with locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumor (PEComa).
In the EU, sirolimus, as Rapamune, is indicated for the prophylaxis of organ rejection in adults at low to moderate immunological risk receiving a renal transplant and, as Hyftor, is indicated for the treatment of facial angiofibroma associated with tuberous sclerosis complex.
Organ rejection and Immunosuppression#Deliberately induced
The chief advantage sirolimus has over calcineurin inhibitors is its low toxicity toward kidneys.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The 'mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin', and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases. mTOR links with other proteins and serves as a core component of two distinct protein complexes, mTOR complex 1 and mTOR complex 2, which regulate different cellular processes.
Transplant rejection occurs when transplanted tissue is rejected by the recipient's immune system, which destroys the transplanted tissue. Transplant rejection can be lessened by determining the molecular similitude between donor and recipient and by use of immunosuppressant drugs after transplant. Transplant rejection can be classified into three types: hyperacute, acute, and chronic. These types are differentiated by how quickly the recipient's immune system is activated and the specific aspect or aspects of immunity involved.
Everolimus, sold under the brand name Afinitor among others, is a medication used as an immunosuppressant to prevent rejection of organ transplants and as a targeted therapy in the treatment of renal cell cancer and other tumours. It is the 40-O-(2-hydroxyethyl) derivative of sirolimus and works similarly to sirolimus as an inhibitor of mammalian target of rapamycin (mTOR). It is marketed by Novartis under the trade names Zortress (US) and Certican (European Union and other countries) in transplantation medicine, and as Afinitor (general tumours) and Votubia (tumours as a result of Tuberous Sclerosis Complex (TSC)) in oncology.
Explores apoptosis regulation, impact on tumors, survival signaling pathways, autophagy in cancer, and challenges in mTOR targeting.
Explores cyclic peptides and macrocycles, their applications in drug development, and the role of bicyclic peptides in targeting specific proteins.
Delves into synthetic biology, assembling molecular components for biological functions in living cells, including gene expression control and engineered receptor signaling.
Protein-protein interactions (PPIs) play important roles in many diseases and their modulation is an attractive strategy for developing new therapeutics. However, the relatively large and often flat binding surfaces of PPIs makes the development of inhibit ...
PURPOSE The PNOC001 phase II single-arm trial sought to estimate progression-free survival (PFS) associated with everolimus therapy for progressive/recurrent pediatric low-grade glioma (pLGG) on the basis of phosphatidylinositol 3-kinase (PI3K)/AKT/mammali ...
2023
, , , , , , , , , , ,
Macrocycles have excellent potential as therapeutics due to their ability to bind challenging targets. However, generating macrocycles against new targets is hindered by a lack of large macrocycle libraries for high-throughput screening. To overcome this, ...