The 'mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin', and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases.
mTOR links with other proteins and serves as a core component of two distinct protein complexes, mTOR complex 1 and mTOR complex 2, which regulate different cellular processes. In particular, as a core component of both complexes, mTOR functions as a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, autophagy, and transcription. As a core component of mTORC2, mTOR also functions as a tyrosine protein kinase that promotes the activation of insulin receptors and insulin-like growth factor 1 receptors. mTORC2 has also been implicated in the control and maintenance of the actin cytoskeleton.
The study of TOR originated in the 1960s with an expedition to Easter Island (known by the island inhabitants as Rapa Nui), with the goal of identifying natural products from plants and soil with possible therapeutic potential. In 1972, Suren Sehgal identified a small molecule, from a soil bacterium Streptomyces hygroscopicus, that he purified and initially reported to possess potent antifungal activity. He appropriately named it rapamycin, noting its original source and activity (Sehgal et al., 1975). However, early testing revealed that rapamycin also had potent immunosuppressive and cytostatic anti-cancer activity. Rapamycin did not initially receive significant interest from the pharmaceutical industry until the 1980s, when Wyeth-Ayerst supported Sehgal's efforts to further investigate rapamycin's effect on the immune system. This eventually led to its FDA approval as an immunosuppressant following kidney transplantation. However, prior to its FDA approval, how rapamycin worked remained completely unknown.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Sarcopenia is a type of muscle loss (muscle atrophy) that occurs with aging and/or immobility. It is characterized by the degenerative loss of skeletal muscle mass, quality, and strength. The rate of muscle loss is dependent on exercise level, co-morbidities, nutrition and other factors. The muscle loss is related to changes in muscle synthesis signalling pathways. It is distinct from cachexia, in which muscle is degraded through cytokine-mediated degradation, although both conditions may co-exist.
Sirolimus, also known as rapamycin and sold under the brand name Rapamune among others, is a macrolide compound that is used to coat coronary stents, prevent organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis, and treat perivascular epithelioid cell tumor (PEComa). It has immunosuppressant functions in humans and is especially useful in preventing the rejection of kidney transplants. It is a mechanistic target of rapamycin kinase (mTOR) inhibitor that inhibits activation of T cells and B cells by reducing their sensitivity to interleukin-2 (IL-2).
Everolimus, sold under the brand name Afinitor among others, is a medication used as an immunosuppressant to prevent rejection of organ transplants and as a targeted therapy in the treatment of renal cell cancer and other tumours. It is the 40-O-(2-hydroxyethyl) derivative of sirolimus and works similarly to sirolimus as an inhibitor of mammalian target of rapamycin (mTOR). It is marketed by Novartis under the trade names Zortress (US) and Certican (European Union and other countries) in transplantation medicine, and as Afinitor (general tumours) and Votubia (tumours as a result of Tuberous Sclerosis Complex (TSC)) in oncology.
Explores the basic concepts and translational opportunities in immunometabolism, emphasizing the intricate interactions between immune cells and different cell types.
Under cold stress, the processes of autophagy, apoptosis and energy metabolism are pivotal for sustaining energy and tissue balance. However, the molecular regulatory mechanisms and interactions underlying these processes are still largely unknown. In this ...
PURPOSE The PNOC001 phase II single-arm trial sought to estimate progression-free survival (PFS) associated with everolimus therapy for progressive/recurrent pediatric low-grade glioma (pLGG) on the basis of phosphatidylinositol 3-kinase (PI3K)/AKT/mammali ...
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory ...