Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and non-toxic; however, it can contain impurities and cause corrosion.
Water cooling is commonly used for cooling automobile internal combustion engines and power stations. Water coolers utilising convective heat transfer are used inside high-end personal computers to lower the temperature of CPUs and other components.
Other uses include the cooling of lubricant oil in pumps; for cooling purposes in heat exchangers; for cooling buildings in HVAC and in chillers.
Water is inexpensive, non-toxic, and available over most of the earth's surface. Liquid cooling offers higher thermal conductivity than air cooling. Water has unusually high specific heat capacity among commonly available liquids at room temperature and atmospheric pressure allowing efficient heat transfer over distance with low rates of mass transfer. Cooling water may be recycled through a recirculating system or used in a single pass once-through cooling (OTC) system. Water's high enthalpy of vaporization allows the option of efficient evaporative cooling to remove waste heat in cooling towers or cooling ponds. Recirculating systems may be open if they rely upon evaporative cooling or closed if heat removal is accomplished in heat exchangers with negligible evaporative loss. A heat exchanger or condenser may separate non-contact cooling water from a fluid being cooled, or contact cooling water may directly impinge on items like saw blades where phase difference allows easy separation. Environmental regulations emphasize the reduced concentrations of waste products in non-contact cooling water.
Water accelerates corrosion of metal parts and is a favorable medium for biological growth. Dissolved minerals in natural water supplies are concentrated by evaporation to leave deposits called scale. Cooling water often requires addition of chemicals to minimize corrosion and insulating deposits of scale and biofouling.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A radiator is a heat exchanger used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics. A radiator is always a source of heat to its environment, although this may be for either the purpose of heating this environment, or for cooling the fluid or coolant supplied to it, as for automotive engine cooling and HVAC dry cooling towers.
A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.
A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces. At the hot interface of a heat pipe, a volatile liquid in contact with a thermally conductive solid surface turns into a vapor by absorbing heat from that surface. The vapor then travels along the heat pipe to the cold interface and condenses back into a liquid, releasing the latent heat. The liquid then returns to the hot interface through capillary action, centrifugal force, or gravity and the cycle repeats.
Modern datacenters with thousands of servers and multi-megawatt power budgets form the backbone of our digital universe. ln this course, we will survey a broad and comprehensive spectrum of datacenter
Methods for the rational use and conversion of energy in industrial processes : how to analyse the energy usage, calculate the heat recovery by pinch analysis, define heat exchanger network, integrate
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Water can be vitrified if it is cooled at high rates, which makes it possible to outrun crystallization in so-called no man’s land, a range of deeply supercooled temperatures where water crystallizes rapidly. Here, we study the reverse process in pure wate ...
2024
The transition towards clean renewable energy sources, where wind and solar are prone to variation, requires adequate energy storage. Power-to-methane (PtM) systems can be part of the solution. Specifically, solid-oxide-electrolyser (SOE) based PtM systems ...
Energy piles represent an innovative technology that can help provide sustainable geothermal heating or cooling energy for thermal conditioning purposes. In hot-dominated climates, the interest is to inject heat in the ground and extract energy for space-c ...