Summary
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field. Permittivity is a material's property that affects the Coulomb force between two point charges in the material. Relative permittivity is the factor by which the electric field between the charges is decreased relative to vacuum. Likewise, relative permittivity is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has vacuum as its dielectric. Relative permittivity is also commonly known as the dielectric constant, a term still used but deprecated by standards organizations in engineering as well as in chemistry. Relative permittivity is typically denoted as εr(ω) (sometimes κ, lowercase kappa) and is defined as where ε(ω) is the complex frequency-dependent permittivity of the material, and ε0 is the vacuum permittivity. Relative permittivity is a dimensionless number that is in general complex-valued; its real and imaginary parts are denoted as: The relative permittivity of a medium is related to its electric susceptibility, χe, as εr(ω) = 1 + χe. In anisotropic media (such as non cubic crystals) the relative permittivity is a second rank tensor. The relative permittivity of a material for a frequency of zero is known as its static relative permittivity. The historical term for the relative permittivity is dielectric constant. It is still commonly used, but has been deprecated by standards organizations, because of its ambiguity, as some older reports used it for the absolute permittivity ε. The permittivity may be quoted either as a static property or as a frequency-dependent variant, in which case it is also known as the dielectric function. It has also been used to refer to only the real component ε′r of the complex-valued relative permittivity.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.