The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
Permittivity is a material's property that affects the Coulomb force between two point charges in the material. Relative permittivity is the factor by which the electric field between the charges is decreased relative to vacuum.
Likewise, relative permittivity is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has vacuum as its dielectric. Relative permittivity is also commonly known as the dielectric constant, a term still used but deprecated by standards organizations in engineering as well as in chemistry.
Relative permittivity is typically denoted as εr(ω) (sometimes κ, lowercase kappa) and is defined as
where ε(ω) is the complex frequency-dependent permittivity of the material, and ε0 is the vacuum permittivity.
Relative permittivity is a dimensionless number that is in general complex-valued; its real and imaginary parts are denoted as:
The relative permittivity of a medium is related to its electric susceptibility, χe, as εr(ω) = 1 + χe.
In anisotropic media (such as non cubic crystals) the relative permittivity is a second rank tensor.
The relative permittivity of a material for a frequency of zero is known as its static relative permittivity.
The historical term for the relative permittivity is dielectric constant. It is still commonly used, but has been deprecated by standards organizations, because of its ambiguity, as some older reports used it for the absolute permittivity ε. The permittivity may be quoted either as a static property or as a frequency-dependent variant, in which case it is also known as the dielectric function. It has also been used to refer to only the real component ε′r of the complex-valued relative permittivity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.
A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.
Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Joseph Valasek.
Students will learn simple theoretical models, the theoretical background of finite element modeling as well as its application to modeling charge, mass and heat transport in electronic, fluidic and e
van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-kappa layered d ...
2024
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...
Nature Portfolio2024
, , , ,
Research on chipless and passive architectures for environmental sensing is generating high interest because they do not require any semiconductor components or batteries to operate, thus resulting in an eco-friendlier footprint. This study demonstrates a ...