Summary
Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system also known as micro fuel cell that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or electron donor) on the anode to oxidized compounds such as oxygen (also known as oxidizing agent or electron acceptor) on the cathode through an external electrical circuit. MFCs produce electricity by using the electrons derived from biochemical reactions catalyzed by bacteria. MFCs can be grouped into two general categories: mediated and unmediated. The first MFCs, demonstrated in the early 20th century, used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. Unmediated MFCs emerged in the 1970s; in this type of MFC the bacteria typically have electrochemically active redox proteins such as cytochromes on their outer membrane that can transfer electrons directly to the anode. In the 21st century MFCs have started to find commercial use in wastewater treatment. The idea of using microbes to produce electricity was conceived in the early twentieth century. Michael Cressé Potter initiated the subject in 1911. Potter managed to generate electricity from Saccharomyces cerevisiae, but the work received little coverage. In 1931, Barnett Cohen created microbial half fuel cells that, when connected in series, were capable of producing over 35 volts with only a current of 2 milliamps. A study by DelDuca et al. used hydrogen produced by the fermentation of glucose by Clostridium butyricum as the reactant at the anode of a hydrogen and air fuel cell. Though the cell functioned, it was unreliable owing to the unstable nature of hydrogen production by the micro-organisms. This issue was resolved by Suzuki et al. in 1976, who produced a successful MFC design a year later. In the late 1970s, little was understood about how microbial fuel cells functioned. The concept was studied by Robin M. Allen and later by H. Peter Bennetto.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.