In geometry, a tile substitution is a method for constructing highly ordered tilings. Most importantly, some tile substitutions generate aperiodic tilings, which are tilings whose prototiles do not admit any tiling with translational symmetry. The most famous of these are the Penrose tilings. Substitution tilings are special cases of finite subdivision rules, which do not require the tiles to be geometrically rigid.
A tile substitution is described by a set of prototiles (tile shapes) , an expanding map and a dissection rule showing how to dissect the expanded prototiles to form copies of some prototiles . Intuitively, higher and higher iterations of tile substitution produce a tiling of the plane called a substitution tiling. Some substitution tilings are periodic, defined as having translational symmetry.
Every substitution tiling (up to mild conditions) can be "enforced by matching rules"—that is, there exist a set of marked tiles that can only form exactly the substitution tilings generated by the system. The tilings by these marked tiles are necessarily aperiodic.
A simple example that produces a periodic tiling has only one prototile, namely a square:
By iterating this tile substitution, larger and larger regions of the plane are covered with a square grid. A more sophisticated example with two prototiles is shown below, with the two steps of blowing up and dissecting merged into one step.
One may intuitively get an idea how this procedure yields a substitution tiling of the entire plane. A mathematically rigorous definition is given below. Substitution tilings are notably useful as ways of defining aperiodic tilings, which are objects of interest in many fields of mathematics, including automata theory, combinatorics, discrete geometry, dynamical systems, group theory, harmonic analysis and number theory, as well as crystallography and chemistry. In particular, the celebrated Penrose tiling is an example of an aperiodic substitution tiling.
In 1973 and 1974, Roger Penrose discovered a family of aperiodic tilings, now called Penrose tilings.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.
In mathematics, a prototile is one of the shapes of a tile in a tessellation. A tessellation of the plane or of any other space is a cover of the space by closed shapes, called tiles, that have disjoint interiors. Some of the tiles may be congruent to one or more others. If S is the set of tiles in a tessellation, a set R of shapes is called a set of prototiles if no two shapes in R are congruent to each other, and every tile in S is congruent to one of the shapes in R.
A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders—for instance, five-fold.
Moire effects that occur in the superposition of aperiodic layers such as random dot screens are known as Glass patterns. Unlike classical moiré effects between periodic layers, which are periodically repeated throughout the superposition, a Glass p ...
Opt. Soc. America2003
Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless com ...