vignette|Un pavage de Penrose|alt=
vignette|Roger Penrose, debout sur le pavage de Penrose du foyer de l'institut Mitchell, Texas A&M University|alt=
Les pavages de Penrose sont, en géométrie, des pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure des quasi-cristaux.
Les pavages de Penrose sont des pavages non périodiques caractérisables par des règles locales : s'ils ne sont historiquement pas les premiers à vérifier cette propriété, ils sont parmi les plus simples, et à ce titre largement étudiés (le premier tel pavage, construit par Robert Berger en 1966, comportait tuiles).
Les 17 pavages périodiques du plan étaient connus de longue date quand Roger Penrose s'est intéressé aux pavages non périodiques. Son intention n'était pas d'ouvrir un nouveau champ des mathématiques et de la physique mais seulement de créer un divertissement mathématique. En 1974, il publia un article présentant un pavage du plan à l'aide de pentagones, de losanges, de pentagrammes et de portions de pentagrammes.
Certains pavages de Penrose présentent une symétrie d'ordre 5 (invariance par rotation d'angle 2π/5 radian, soit 72°), mais aucun n'est périodique, c'est-à-dire qu'on ne peut le décrire comme un motif répété sur une grille régulière. Ils sont cependant tous quasi périodiques, c'est-à-dire que tout motif apparaissant dans le pavage réapparaît régulièrement. Plus généralement toute portion finie du pavage, aussi grande soit-elle, se répète infiniment dans le pavage.
Les pavages de Penrose ne seraient restés qu'un joli divertissement mathématique si n'avaient été découverts, en 1984, des matériaux présentant une structure fortement ordonnée comme celle des cristaux mais non périodique : les quasi-cristaux. Les pavages non périodiques, en particulier ceux de Penrose, s'avérèrent alors un modèle plausible de ces étranges matériaux.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some appl
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
In mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals. Instead of repeating exactly the same design over and over, they have slight variations in each stage, allowing a richer structure while maintaining the elegant style of fractals. Subdivision rules have been used in architecture, biology, and computer science, as well as in the study of hyperbolic manifolds.
In geometry, a tile substitution is a method for constructing highly ordered tilings. Most importantly, some tile substitutions generate aperiodic tilings, which are tilings whose prototiles do not admit any tiling with translational symmetry. The most famous of these are the Penrose tilings. Substitution tilings are special cases of finite subdivision rules, which do not require the tiles to be geometrically rigid.
En mathématiques, et plus particulièrement en géométrie, un pavage apériodique est un pavage non périodique ne contenant pas de sections périodiques arbitrairement grandes. Les pavages de Penrose sont les exemples les plus connus de pavages apériodiques, mais il existe plusieurs autres méthodes pour en construire. Les pavages apériodiques servent de modèles mathématiques pour les quasi-cristaux, des objets physiques découverts en 1982 par Dan Shechtman, mais dont la structure locale exacte est encore mal comprise.
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...
Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless com ...
EPFL2021
, ,
Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic ...