A giant star is a star with substantially larger radius and luminosity than a main-sequence (or dwarf) star of the same surface temperature. They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms giant and dwarf were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905.
Giant stars have radii up to a few hundred times the Sun and luminosities between 10 and a few thousand times that of the Sun. Stars still more luminous than giants are referred to as supergiants and hypergiants.
A hot, luminous main-sequence star may also be referred to as a giant, but any main-sequence star is properly called a dwarf, regardless of how large and luminous it is.
A star becomes a giant after all the hydrogen available for fusion at its core has been depleted and, as a result, leaves the main sequence. The behaviour of a post-main-sequence star depends largely on its mass.
For a star with a mass above about 0.25 solar masses (), once the core is depleted of hydrogen it contracts and heats up so that hydrogen starts to fuse in a shell around the core. The portion of the star outside the shell expands and cools, but with only a small increase in luminosity, and the star becomes a subgiant. The inert helium core continues to grow and increase in temperature as it accretes helium from the shell, but in stars up to about it does not become hot enough to start helium burning (higher-mass stars are supergiants and evolve differently). Instead, after just a few million years the core reaches the Schönberg–Chandrasekhar limit, rapidly collapses, and may become degenerate. This causes the outer layers to expand even further and generates a strong convective zone that brings heavy elements to the surface in a process called the first dredge-up.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.
Pollux is the brightest star in the constellation of Gemini. It has the Bayer designation β Geminorum, which is Latinised to Beta Geminorum and abbreviated Beta Gem or β Gem. This is an orange-hued, evolved giant star located at a distance of 34 light-years, making it the closest giant to the Sun. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified. In 2006 an extrasolar planet (designated Pollux b or β Geminorum b, later named Thestias) was confirmed to be orbiting it.
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.
Explores the Variable Universe through the Cosmic Distance Ladder, focusing on standard candles and the Hubble constant tension.
Introduces spectral classification of stars and the HR diagram.
Explores the origin of radionuclides from supernova explosions and their role in nature, covering topics such as nuclear astrophysics, cosmic element formation, and stellar evolution.
The globular cluster Messier 80 was monitored by the Kepler space telescope for 80 days during the K2 mission. Continuous, high-precision photometry of such an old, compact cluster allows us for studies of its variable star population in unprecedented deta ...
The tip of the red giant branch (TRGB) is an important standard candle for determining luminosity distances. Although several 105 small-amplitude red giant stars (SARGs) have been discovered, variability was previously considered irrelevant for the TRGB as ...
The radial metallicity distribution of the Milky Way's disc is an important observational constraint for models of the formation and evolution of our Galaxy. It informs our understanding of the chemical enrichment of the Galactic disc and the dynamical pro ...