Summary
Distributed-element circuits are electrical circuits composed of lengths of transmission lines or other distributed components. These circuits perform the same functions as conventional circuits composed of passive components, such as capacitors, inductors, and transformers. They are used mostly at microwave frequencies, where conventional components are difficult (or impossible) to implement. Conventional circuits consist of individual components manufactured separately then connected together with a conducting medium. Distributed-element circuits are built by forming the medium itself into specific patterns. A major advantage of distributed-element circuits is that they can be produced cheaply as a printed circuit board for consumer products, such as satellite television. They are also made in coaxial and waveguide formats for applications such as radar, satellite communication, and microwave links. A phenomenon commonly used in distributed-element circuits is that a length of transmission line can be made to behave as a resonator. Distributed-element components which do this include stubs, coupled lines, and cascaded lines. Circuits built from these components include filters, power dividers, directional couplers, and circulators. Distributed-element circuits were studied during the 1920s and 1930s but did not become important until World War II, when they were used in radar. After the war their use was limited to military, space, and broadcasting infrastructure, but improvements in materials science in the field soon led to broader applications. They can now be found in domestic products such as satellite dishes and mobile phones. Distributed-element circuits are designed with the distributed-element model, an alternative to the lumped-element model in which the passive electrical elements of electrical resistance, capacitance and inductance are assumed to be "lumped" at one point in space in a resistor, capacitor or inductor, respectively.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.