Concept

Generator (computer programming)

Summary
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values. However, instead of building an array containing all the values and returning them all at once, a generator yields the values one at a time, which requires less memory and allows the caller to get started processing the first few values immediately. In short, a generator looks like a function but behaves like an iterator. Generators can be implemented in terms of more expressive control flow constructs, such as coroutines or first-class continuations. Generators, also known as semicoroutines, are a special case of (and weaker than) coroutines, in that they always yield control back to the caller (when passing a value back), rather than specifying a coroutine to jump to; see comparison of coroutines with generators. Generators are usually invoked inside loops. The first time that a generator invocation is reached in a loop, an iterator object is created that encapsulates the state of the generator routine at its beginning, with arguments bound to the corresponding parameters. The generator's body is then executed in the context of that iterator until a special yield action is encountered; at that time, the value provided with the yield action is used as the value of the invocation expression. The next time the same generator invocation is reached in a subsequent iteration, the execution of the generator's body is resumed after the yield action, until yet another yield action is encountered. In addition to the yield action, execution of the generator body can also be terminated by a finish action, at which time the innermost loop enclosing the generator invocation is terminated. In more complicated situations, a generator may be used manually outside of a loop to create an iterator, which can then be used in various ways.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.