In chemistry, fractional crystallization is a method of refining substances based on differences in their solubility. It fractionates via differences in crystallization (forming of crystals). If a mixture of two or more substances in solution are allowed to crystallize, for example by allowing the temperature of the solution to decrease or increase, the precipitate will contain more of the least soluble substance. The proportion of components in the precipitate will depend on their solubility products. If the solubility products are very similar, a cascade process will be needed to effectuate a complete separation.
This technique is often used in chemical engineering to obtain pure substances, or to recover saleable products from waste solutions.
Fractional crystallization can be used to separate solid-solid mixtures. An example of this is separating KNO3 and KClO3.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Understanding grain morphology and kinetics of solid-phase crystallization is important for controlling the functional properties of polycrystalline materials. Here, in situ coherent X-ray diffraction imaging and transmission electron microscopy elucidate ...
SPRINGERNATURE2022
, ,
The delafossite metal PtCoO2 is among the highest-purity materials known, with low-temperature mean free path up to 5 mu m in the best as-grown single crystals. It exhibits a strongly faceted, nearly hexagonal Fermi surface. This property has profound cons ...
AMER PHYSICAL SOC2023
, , , , , , , ,
The black phase of formamidinium lead iodide (FAPbI(3)) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during ...
In chemistry, recrystallization is a technique used to purify chemicals. By dissolving a mixture of a compound and impurities in an appropriate solvent, either the desired compound or impurities can be removed from the solution, leaving the other behind. It is named for the crystals often formed when the compound precipitates out. Alternatively, recrystallization can refer to the natural growth of larger ice crystals at the expense of smaller ones. In chemistry, recrystallization is a procedure for purifying compounds.
A crystal is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. Crystal growth is a major stage of a crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. The growth typically follows an initial stage of either homogeneous or heterogeneous (surface catalyzed) nucleation, unless a "seed" crystal, purposely added to start the growth, was already present.
Laser-heated pedestal growth (LHPG) or laser floating zone (LFZ) is a crystal growth technique. A narrow region of a crystal is melted with a powerful CO2 or YAG laser. The laser and hence the floating zone, is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it. This technique for growing crystals from the melt (liquid/solid phase transition) is used in materials research.