Drosophila embryogenesis, the process by which Drosophila (fruit fly) embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. Drosophila melanogaster was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909.
Drosophila display a holometabolous method of development, meaning that they have three distinct stages of their post-embryonic life cycle, each with a radically different body plan: larva, pupa and finally, adult. The machinery necessary for the function and smooth transition between these three phases develops during embryogenesis. During embryogenesis, the larval stage fly will develop and hatch at a stage of its life known as the first larval instar. Cells that will produce adult structures are put aside in imaginal discs. During the pupal stage, the larval body breaks down as the imaginal disks grow and produce the adult body. This process is called complete metamorphosis. About 24 hours after fertilization, an egg hatches into a larva, which undergoes three molts taking about 5.5 to 6 days, after which it is called a pupa. The pupa metamorphoses into an adult fly, which takes about 3.5 to 4.5 days. The entire growth process from egg to adult fly takes an estimated 10 to 12 days to complete at 25 °C.
The mother fly produces oocytes that already have anterior-posterior and dorsal-ventral axes defined by maternal activities.
Embryogenesis in Drosophila is unique among model organisms in that cleavage occurs in a multinucleate syncytium (strictly a coenocyte). Early on, 256 nuclei migrate to the perimeter of the egg, creating the syncytial blastoderm. The germ line segregates from the somatic cells through the formation of pole cells at the posterior end of the embryo.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
During development, cell fates are governed by multiple microenvironmental cues and their integration by specific signal transduction pathways. This course focuses on imaging of mechanosensory cilia o
Ce cours décrit les mécanismes fondamentaux du système immunitaire. Ses connaissances seront ensuite utilisées pour mieux comprendre les bases immunologiques de la vaccination, de la transplantation,
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.
Segmentation in biology is the division of some animal and plant body plans into a series of repetitive segments. This article focuses on the segmentation of animal body plans, specifically using the examples of the taxa Arthropoda, Chordata, and Annelida. These three groups form segments by using a "growth zone" to direct and define the segments. While all three have a generally segmented body plan and use a growth zone, they use different mechanisms for generating this patterning.
Morphogenesis (from the Greek morphê shape and genesis creation, literally "the generation of form") is the biological process that causes a cell, tissue or organism to develop its shape. It is one of three fundamental aspects of developmental biology along with the control of tissue growth and patterning of cellular differentiation. The process controls the organized spatial distribution of cells during the embryonic development of an organism.
Delves into the role of morphogens in cell patterning and explores centrosome movement in cellular interactions.
How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to ...
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 ( ...
Central nervous system organogenesis is a complex process that obeys precise architectural rules. The impact that nervous system architecture may have on its functionality remains, however, relatively unexplored. To clarify this problem, we analyze the dev ...