In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group GLn (n x n invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup.
For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups.
Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B,N) pair. Here the group B is a Borel subgroup and N is the normalizer of a maximal torus contained in B.
The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups.
Subgroups between a Borel subgroup B and the ambient group G are called parabolic subgroups.
Parabolic subgroups P are also characterized, among algebraic subgroups, by the condition that G/P is a complete variety.
Working over algebraically closed fields, the Borel subgroups turn out to be the minimal parabolic subgroups in this sense. Thus B is a Borel subgroup when the homogeneous space G/B is a complete variety which is "as large as possible".
For a simple algebraic group G, the set of conjugacy classes of parabolic subgroups is in bijection with the set of all subsets of nodes of the corresponding Dynkin diagram; the Borel subgroup corresponds to the empty set and G itself corresponding to the set of all nodes. (In general each node of the Dynkin diagram determines a simple negative root and thus a one-dimensional 'root group' of G–a subset of the nodes thus yields a parabolic subgroup, generated by B and the corresponding negative root groups. Moreover, any parabolic subgroup is conjugate to such a parabolic subgroup.)
Let . A Borel subgroup of is the set of upper triangular matricesand the maximal proper parabolic subgroups of containing areAlso, a maximal torus in isThis is isomorphic to the algebraic torus .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.
The topics addressed in this course are the structure theory of reductive algebraic groups, their associated Lie algebras, the related finite groups of Lie type, and the representation theory of all o
The topics addressed in this course are the structure theory of reductive algebraic groups, their associated Lie algebras, the related finite groups of Lie type, and the representation theory of all o
In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.
In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...
Let G be a simple linear algebraic group defined over an algebraically closed field of characteristic p ≥ 0 and let φ be a nontrivial p-restricted irreducible representation of G. Let T be a maximal torus of G and s ∈ T . We say that s is Ad-regular if α(s ...