Summary
In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these. The Weyl group of a semisimple Lie group, a semisimple Lie algebra, a semisimple linear algebraic group, etc. is the Weyl group of the root system of that group or algebra. Let be a root system in a Euclidean space . For each root , let denote the reflection about the hyperplane perpendicular to , which is given explicitly as where is the inner product on . The Weyl group of is the subgroup of the orthogonal group generated by all the 's. By the definition of a root system, each preserves , from which it follows that is a finite group. In the case of the root system, for example, the hyperplanes perpendicular to the roots are just lines, and the Weyl group is the symmetry group of an equilateral triangle, as indicated in the figure. As a group, is isomorphic to the permutation group on three elements, which we may think of as the vertices of the triangle. Note that in this case, is not the full symmetry group of the root system; a 60-degree rotation preserves but is not an element of . We may consider also the root system. In this case, is the space of all vectors in whose entries sum to zero. The roots consist of the vectors of the form , where is the th standard basis element for . The reflection associated to such a root is the transformation of obtained by interchanging the th and th entries of each vector. The Weyl group for is then the permutation group on elements. Coxeter group#Affine Coxeter groups If is a root system, we may consider the hyperplane perpendicular to each root .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.