The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or .
Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity. For instance, metals typically have high thermal conductivity and are very efficient at conducting heat, while the opposite is true for insulating materials like mineral wool or Styrofoam. Correspondingly, materials of high thermal conductivity are widely used in heat sink applications, and materials of low thermal conductivity are used as thermal insulation. The reciprocal of thermal conductivity is called thermal resistivity.
The defining equation for thermal conductivity is , where is the heat flux, is the thermal conductivity, and is the temperature gradient. This is known as Fourier's Law for heat conduction. Although commonly expressed as a scalar, the most general form of thermal conductivity is a second-rank tensor. However, the tensorial description only becomes necessary in materials which are anisotropic.
Consider a solid material placed between two environments of different temperatures. Let be the temperature at and be the temperature at , and suppose . An example of this scenario is a building on a cold winter day: the solid material in this case is the building wall, separating the cold outdoor environment from the warm indoor environment.
According to the second law of thermodynamics, heat will flow from the hot environment to the cold one as the temperature difference is equalized by diffusion. This is quantified in terms of a heat flux , which gives the rate, per unit area, at which heat flows in a given direction (in this case minus x-direction). In many materials, is observed to be directly proportional to the temperature difference and inversely proportional to the separation distance :
The constant of proportionality is the thermal conductivity; it is a physical property of the material. In the present scenario, since heat flows in the minus x-direction and is negative, which in turn means that .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k. Heat spontaneously flows along a temperature gradient (i.e. from a hotter body to a colder body). For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it.
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species (mass transfer in the form of advection), either cold or hot, to achieve heat transfer.
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m).
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
This course is an introduction to the concepts and associated relevant physics and materials science principles of what makes inorganic nanomaterials outperform their bulk counterparts. It covers thei
Ce cours a comme objectif de présenter les concepts nécessaires à la compréhension des principes fondamentaux qui permettent de prédire les propriétés d'un matériau. Ces concepts vous permettront de r
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
The time-honored Allen -Feldman theory of heat transport in glasses is generally assumed to predict a finite value for the thermal conductivity, even if it neglects the anharmonic broadening of vibrational normal modes. We demonstrate that the harmonic app ...
Accessing the thermal transport properties of glasses is a major issue for the design of production strategies of glass industry, as well as for the plethora of applications and devices where glasses are employed. From the computational standpoint, the che ...
Nuclear power is a powerful technology that plays an important role in the fight against climate change, and research is continuously engaged in studies that could further improve its safety. After the Fukushima accident, Accident Tolerant Fuels research h ...