Summary
A disc brake is a type of brake that uses the calipers to squeeze pairs of pads against a disc or a "rotor" to create friction. This action slows the rotation of a shaft, such as a vehicle axle, either to reduce its rotational speed or to hold it stationary. The energy of motion is converted into waste heat which must be dispersed. Hydraulically actuated disc brakes are the most commonly used form of brake for motor vehicles, but the principles of a disc brake are applicable to almost any rotating shaft. The components include the disc, master cylinder, and caliper, which contains at least one cylinder and two brake pads on both sides of the disc. The development of disc-type brakes began in England in the 1890s. In 1902, the Lanchester Motor Company designed brakes that looked and operated in a similar way to a modern disc-brake system even though the disc was thin and a cable activated the brake pad. Other designs were not practical or widely available in cars for another 60 years. Successful application began in airplanes before World War II, and even the German Tiger tank was fitted with discs in 1942. After the war, technological progress began to arrive in 1949, with caliper-type four-wheel disc brakes on the Crosley line, and a Chrysler non-caliper type. In the 1950s, there was a critical demonstration of superiority at the 1953 24 Hours of Le Mans race, which required braking from high speeds several times per lap. The Jaguar racing team won, using disc brake-equipped cars, with much of the credit being given to the brakes' superior performance over rivals equipped with drum brakes. Mass production began with the 1949–1950 inclusion in all Crosley production, with sustained mass production beginning in 1955 Citroën DS. Compared to drum brakes, disc brakes offer better-stopping performance because the disc is more readily cooled. As a consequence discs are less prone to the brake fade caused when brake components overheat. Disc brakes also recover more quickly from immersion (wet brakes are less effective than dry ones).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.