Benthos (), also known as benthon, is the community of organisms that live on, in, or near the bottom of a sea, river, lake, or stream, also known as the benthic zone. This community lives in or near marine or freshwater sedimentary environments, from tidal pools along the foreshore, out to the continental shelf, and then down to the abyssal depths. Many organisms adapted to deep-water pressure cannot survive in the upper parts of the water column. The pressure difference can be very significant (approximately one atmosphere for every 10 metres of water depth). Because light is absorbed before it can reach deep ocean water, the energy source for deep benthic ecosystems is often organic matter from higher up in the water column that drifts down to the depths. This dead and decaying matter sustains the benthic food chain; most organisms in the benthic zone are scavengers or detritivores. The term benthos, coined by Haeckel in 1891, comes from the Greek noun βένθος 'depth of the sea'. Benthos is used in freshwater biology to refer to organisms at the bottom of freshwater bodies of water, such as lakes, rivers, and streams. There is also a redundant synonym, Benton. Compared to the relatively featureless pelagic zone, the benthic zone offers physically diverse habitats. There is a huge range in how much light and warmth is available, and in the depth of water or extent of intertidal immersion. The seafloor varies widely in the types of sediment it offers. Burrowing animals can find protection and food in soft, loose sediments such as mud, clay and sand. Sessile species such as oysters and barnacles can attach themselves securely to hard, rocky substrates. As adults they can remain at the same site, shaping depressions and crevices where mobile animals find refuge. This greater diversity in benthic habitats has resulted in a higher diversity of benthic species. The number of benthic animal species exceeds one million. This far exceeds the number of pelagic animal species (about 5000 larger zooplankton species, 22,000 pelagic fish species and 110 marine mammal species).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
ENV-426: Fluvial biogeosciences
Stream and river ecosystems are increasingly deteriorated owing to global change and climate change. Students will understand basic physical, chemical and biological processes in streams and rivers, a
Related lectures (5)
Riprap Ramps for River Restoration
Explores the design and impact of riprap ramps for river restoration, emphasizing fish migration and ecological considerations.
Show more
Related publications (43)

Global emergent responses of stream microbial metabolism to glacier shrinkage

Tom Ian Battin, Hannes Markus Peter, Massimo Bourquin, Nicola Deluigi, Tyler Joe Kohler, Michail Styllas

Most cryospheric ecosystems are energy limited. How their energetics will respond to climate change remains largely unknown. This is particularly true for glacier-fed streams, which interface with the cryosphere and initiate some of Earth's largest river s ...
Berlin2024

Fate and effects of microplastic particles in a periphyton-grazer system

Kristin Schirmer, Ahmed Tlili, Renata Behra

In the aquatic environment, microplastic particles (MP) can accumulate in microbial communities that cover submerged substrata, i.e. in periphyton. Despite periphyton being the essential food source for grazers in the benthic zones, MP transfer from periph ...
Elsevier Sci Ltd2024

Impact of substrate clogging on vertical connectivity

Giovanni De Cesare, Romain Maxime Dubuis, Robin Schroff

Connectivity between the hyporheic zone and the flow is essential for the development of benthos and the reproductive success of spawning fish. The infiltration of fine sediment leads to clogging of the riverbed, reducing porosity and vertical water exchan ...
2023
Show more
Related concepts (25)
Pelagic zone
The pelagic zone consists of the water column of the open ocean and can be further divided into regions by depth. The word pelagic is derived . The pelagic zone can be thought of as an imaginary cylinder or water column between the surface of the sea and the bottom. Conditions in the water column change with depth: pressure increases; temperature and light decrease; salinity, oxygen, micronutrients (such as iron, magnesium and calcium) all change.
Marine ecosystem
Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Seawater has an average salinity of 35 parts per thousand of water. Actual salinity varies among different marine ecosystems.
Neritic zone
The neritic zone (or sublittoral zone) is the relatively shallow part of the ocean above the drop-off of the continental shelf, approximately in depth. From the point of view of marine biology it forms a relatively stable and well-illuminated environment for marine life, from plankton up to large fish and corals, while physical oceanography sees it as where the oceanic system interacts with the coast.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.