Concept

Abductive reasoning

Summary
Abductive reasoning (also called abduction, abductive inference, or retroduction) is a form of logical inference that seeks the simplest and most likely conclusion from a set of observations. It was formulated and advanced by American philosopher Charles Sanders Peirce beginning in the last third of the 19th century. Abductive reasoning, unlike deductive reasoning, yields a plausible conclusion but does not definitively verify it. Abductive conclusions do not eliminate uncertainty or doubt, which is expressed in retreat terms such as "best available" or "most likely". One can understand abductive reasoning as inference to the best explanation, although not all usages of the terms abduction and inference to the best explanation are equivalent. In the 1990s, as computing power grew, the fields of law, computer science, and artificial intelligence research spurred renewed interest in the subject of abduction. Diagnostic expert systems frequently employ abduction. Logical reasoning Deductive reasoning Deductive reasoning allows deriving from only where is a formal logical consequence of . In other words, deduction derives the consequences of the assumed. Given the truth of the assumptions, a valid deduction guarantees the truth of the conclusion. For example, given that "Wikis can be edited by anyone" () and "Wikipedia is a wiki" (), it follows that "Wikipedia can be edited by anyone" (). Inductive reasoning Inductive reasoning is the process of inferring some general principle from a body of knowledge , where does not necessarily follow from . might give us very good reason to accept , but does not ensure . For example, if all swans that we have observed so far are white, we may induce that the possibility that all swans are white is reasonable. We have good reason to believe the conclusion from the premise, but the truth of the conclusion is not guaranteed. (Indeed, it turns out that some swans are black.) Abductive reasoning allows inferring as an explanation of .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood