Summary
In computing, load balancing is the process of distributing a set of tasks over a set of resources (computing units), with the aim of making their overall processing more efficient. Load balancing can optimize the response time and avoid unevenly overloading some compute nodes while other compute nodes are left idle. Load balancing is the subject of research in the field of parallel computers. Two main approaches exist: static algorithms, which do not take into account the state of the different machines, and dynamic algorithms, which are usually more general and more efficient but require exchanges of information between the different computing units, at the risk of a loss of efficiency. A load-balancing algorithm always tries to answer a specific problem. Among other things, the nature of the tasks, the algorithmic complexity, the hardware architecture on which the algorithms will run as well as required error tolerance, must be taken into account. Therefore compromise must be found to best meet application-specific requirements. The efficiency of load balancing algorithms critically depends on the nature of the tasks. Therefore, the more information about the tasks is available at the time of decision making, the greater the potential for optimization. Perfect knowledge of the execution time of each of the tasks allows to reach an optimal load distribution (see algorithm of prefix sum). Unfortunately, this is in fact an idealized case. Knowing the exact execution time of each task is an extremely rare situation. For this reason, there are several techniques to get an idea of the different execution times. First of all, in the fortunate scenario of having tasks of relatively homogeneous size, it is possible to consider that each of them will require approximately the average execution time. If, on the other hand, the execution time is very irregular, more sophisticated techniques must be used. One technique is to add some metadata to each task.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.