In quantum field theory, Wilson loops are gauge invariant operators arising from the parallel transport of gauge variables around closed loops. They encode all gauge information of the theory, allowing for the construction of loop representations which fully describe gauge theories in terms of these loops. In pure gauge theory they play the role of order operators for confinement, where they satisfy what is known as the area law. Originally formulated by Kenneth G. Wilson in 1974, they were used to construct links and plaquettes which are the fundamental parameters in lattice gauge theory. Wilson loops fall into the broader class of loop operators, with some other notable examples being 't Hooft loops, which are magnetic duals to Wilson loops, and Polyakov loops, which are the thermal version of Wilson loops.
To properly define Wilson loops in gauge theory requires considering the fiber bundle formulation of gauge theories. Here for each point in the -dimensional spacetime there is a copy of the gauge group forming what's known as a fiber of the fibre bundle. These fiber bundles are called principal bundles. Locally the resulting space looks like although globally it can have some twisted structure depending on how different fibers are glued together.
The issue that Wilson lines resolve is how to compare points on fibers at two different spacetime points. This is analogous to parallel transport in general relativity which compares tangent vectors that live in the tangent spaces at different points. For principal bundles there is a natural way to compare different fiber points through the introduction of a connection, which is equivalent to introducing a gauge field. This is because a connection is a way to separate out the tangent space of the principal bundle into two subspaces known as the vertical and horizontal subspaces. The former consists of all vectors pointing along the fiber while the latter consists of vectors that are perpendicular to the fiber.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks. The strong interaction is one of the fundamental interactions of nature, and the quantum field theory (QFT) to describe it is called quantum chromodynamics (QCD). Quarks interact with each other by the strong force due to their color charge, mediated by gluons. Gluons themselves possess color charge and can mutually interact.
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.
Explores Feynman rules in QED, emphasizing normal ordered product and Wick's theorem, instantons, and relativistic amplitudes.
Covers the electromagnetic (EM) field in Quantum Field Theory II, discussing gauge transformations, symmetry principles, and field quantization.
Explores two-point functions in Conformal Field Theory, including spectral density interpretation and Euler characteristic invariance.
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
Smearing techniques are widely used in first-principles calculations of metallic and magnetic materials where they improve the accuracy of Brillouin-zone sampling and lessen the impact of level-crossing instabilities. Smearing introduces a fictitious elect ...
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials. Motivated by the desire to efficiently simulate many-body quantum systems with ...