In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.
In the words of William Hubbard's Musical Dictionary (1908), an anomalous chord is a "chord containing an interval" that "has been made very sharp or flat in tempering the scale for instruments of fixed pitches".
The development of well temperament allowed fixed-pitch instruments to play reasonably well in all of the keys. The famous Well-Tempered Clavier by Johann Sebastian Bach takes full advantage of this breakthrough, with pieces written in all 24 major and minor keys. However, while unpleasant intervals (such as the wolf interval) were avoided, the sizes of intervals were still not consistent between keys, and so each key still had its own character. This variation led in the 18th century to an increase in the use of equal temperament, in which the frequency ratio between each pair of adjacent notes on the keyboard was made equal. In other words, the ratio between two notes that were one octave apart was kept pure, and the twelve notes in between the octave were equally spaced from one another. This allowed music to be transposed between keys without changing the relationship between notes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Diatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, especially when applied to contrasting features of the common practice music of the period 1600–1900. These terms may mean different things in different contexts. Very often, diatonic refers to musical elements derived from the modes and transpositions of the "white note scale" C–D–E–F–G–A–B.
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory. While music theory has no axiomatic foundation in modern mathematics, the basis of musical sound can be described mathematically (using acoustics) and exhibits "a remarkable array of number properties".
Musical acoustics or music acoustics is a multidisciplinary field that combines knowledge from physics, psychophysics, organology (classification of the instruments), physiology, music theory, ethnomusicology, signal processing and instrument building, among other disciplines. As a branch of acoustics, it is concerned with researching and describing the physics of music – how sounds are employed to make music.
Throughout this thesis, we are interested in modeling music composition. To do so, we study the association of music theory concepts with the learning capabilities of recurrent neural networks. Especially, we explore numerical formalizations of music so th ...
EPFL2021
, , ,
Active electroacoustic absorbers are membrane absorbers actuated, through a feedback control loop and an electromechanical driver, so as to present optimal sound absorption on a broadband range around the membrane resonance. Taking advantage of the low res ...
In this thesis, we study several stochastic partial differential equations (SPDE’s) in the spatial domain R, driven by multiplicative space-time white noise. We are interested in how rough and unbounded initial data affect the random field solution and the ...