Summary
In , ridge detection is the attempt, via software, to locate ridges in an , defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions. In this respect, the notion of ridge points extends the concept of a local maximum. Correspondingly, the notion of valleys for a function can be defined by replacing the condition of a local maximum with the condition of a local minimum. The union of ridge sets and valley sets, together with a related set of points called the connector set, form a connected set of curves that partition, intersect, or meet at the critical points of the function. This union of sets together is called the function's relative critical set. Ridge sets, valley sets, and relative critical sets represent important geometric information intrinsic to a function. In a way, they provide a compact representation of important features of the function, but the extent to which they can be used to determine global features of the function is an open question. The primary motivation for the creation of ridge detection and valley detection procedures has come from and computer vision and is to capture the interior of elongated objects in the image domain. Ridge-related representations in terms of watersheds have been used for . There have also been attempts to capture the shapes of objects by graph-based representations that reflect ridges, valleys and critical points in the image domain. Such representations may, however, be highly noise sensitive if computed at a single scale only. Because scale-space theoretic computations involve convolution with the Gaussian (smoothing) kernel, it has been hoped that use of multi-scale ridges, valleys and critical points in the context of scale space theory should allow for more a robust representation of objects (or shapes) in the image. In this respect, ridges and valleys can be seen as a complement to natural interest points or local extremal points.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.