In real-time computing, priority inheritance is a method for eliminating unbounded priority inversion. Using this programming method, a process scheduling algorithm increases the priority of a process (A) to the maximum priority of any other process waiting for any resource on which A has a resource lock (if it is higher than the original priority of A).
The basic idea of the priority inheritance protocol is that when a job blocks one or more high-priority jobs, it ignores its original priority assignment and executes its critical section at an elevated priority level. After executing its critical section and releasing its locks, the process returns to its original priority level.
Consider three jobs:
Suppose that both H and L require some shared resource. If L acquires this shared resource (entering a critical section), and H subsequently requires it, H will block until L releases it (leaving its critical section). Without priority inheritance, process M could preempt process L during the critical section and delay its completion, in effect causing the lower-priority process M to indirectly preempt the high-priority process H. This is a priority inversion bug.
With priority inheritance, L will execute its critical section at H's high priority whenever H is blocked on the shared resource. As a result, M will be unable to preempt L and will be blocked. That is, the higher-priority job M must wait for the critical section of the lower priority job L to be executed, because L has inherited H's priority. When L exits its critical section, it regains its original (low) priority and awakens H (which was blocked by L). H, having high priority, preempts L and runs to completion. This enables M and L to resume in succession and run to completion without priority inversion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computer science, priority inversion is a scenario in scheduling in which a high priority task is indirectly superseded by a lower priority task effectively inverting the assigned priorities of the tasks. This violates the priority model that high-priority tasks can only be prevented from running by higher-priority tasks. Inversion occurs when there is a resource contention with a low-priority task that is then preempted by a medium-priority task.
In computer science, rate-monotonic scheduling (RMS) is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority. These operating systems are generally preemptive and have deterministic guarantees with regard to response times. Rate monotonic analysis is used in conjunction with those systems to provide scheduling guarantees for a particular application.
In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows. The scheduling activity is carried out by a process called scheduler. Schedulers are often designed so as to keep all computer resources busy (as in load balancing), allow multiple users to share system resources effectively, or to achieve a target quality-of-service.
Hardware-software co-design is a well known concept in embedded system design.It is also a concept required in designing FPGA-accelerators in data-centers.This course teaches how to transform algorith
Provides an overview of MicroC/OS-II, a real-time kernel with multitasking capabilities and deterministic functions, covering topics such as task management, kernel, and intertask communication.
The paper focuses on the energy management of a single-phase PV-BESS hybrid distributed system sized for residential applications, using a CHB converter topology as grid interface. The CHB is driven with a hierarchical energy management architecture, with ...
ELSEVIER SCIENCE SA2023
,
Probability distributions are key components of many learning from demonstration (LfD) approaches, with the spaces chosen to represent tasks playing a central role. Although the robot configuration is defined by its joint angles, end-effector poses are oft ...
SAGE PUBLICATIONS LTD2021
, ,
Consider a stream of status updates generated by a source, where each update is of one of two types: high priority or ordinary (low priority). These updates are to be transmitted through a network to a monitor. However, the transmission policy of each pack ...