A substitution reaction (also known as single displacement reaction or single substitution reaction) is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to predict the product outcome in a reaction. It also is helpful for optimizing a reaction with regard to variables such as temperature and choice of solvent.
A good example of a substitution reaction is halogenation. When chlorine gas (Cl2) is irradiated, some of the molecules are split into two chlorine radicals (Cl•), whose free electrons are strongly nucleophilic. One of them breaks a C–H covalent bond in CH4 and grabs the hydrogen atom to form the electrically neutral HCl. The other radical reforms a covalent bond with the CH3• to form CH3Cl (methyl chloride).
Nucleophilic substitution
In organic (and inorganic) chemistry, nucleophilic substitution is a fundamental class of reactions in which a nucleophile selectively bonds with or attacks the positive or partially positive charge on an atom or a group of atoms. As it does so, it replaces a weaker nucleophile, which then becomes a leaving group; the remaining positive or partially positive atom becomes an electrophile. The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate.
The most general form for the reaction may be given as
Nuc\mathbf{:} + R-LG -> R-Nuc{} + LG\mathbf{:}
where indicates the substrate. The electron pair (:) from the nucleophile (Nuc:) attacks the substrate (), forming a new covalent bond . The prior state of charge is restored when the leaving group (LG) departs with an electron pair.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
To develop basic understanding of the reactivity of aromatic and heteroaromatic compounds. To develop a knowledge of a class of pericyclic reactions. To apply them in the context of the synthesis.
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
In chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
DISPLAYTITLE:SN1 reaction The SN1 reaction is a substitution reaction in organic chemistry, the name of which refers to the Hughes-Ingold symbol of the mechanism. "SN" stands for "nucleophilic substitution", and the "1" says that the rate-determining step is unimolecular. Thus, the rate equation is often shown as having first-order dependence on the substrate and zero-order dependence on the nucleophile. This relationship holds for situations where the amount of nucleophile is much greater than that of the intermediate.
A nucleophilic aromatic substitution is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution. Just as normally nucleophilic alkenes can be made to undergo conjugate substitution if they carry electron-withdrawing substituents, so normally nucleophilic aromatic rings also become electrophilic if they have the right substituents.
Explores power series solutions in quantum mechanics for differential equations and energy quantization.
, ,
Absorption in amine solutions is a well-established advanced technology for CO2 capture. However, the fundamental aspects of the chemical reactions occurring in solution still appear to be unclear. Our previous investigation of aqueous monoethanolamine (ME ...
The biological N-2-fixation process is catalyzed exclusively by metallocofactor-containing nitrogenases. Structural and spectroscopic studies highlighted the presence of an additional mononuclear metal-binding (MMB) site, which can coordinate Fe in additio ...
The Wacker process, which is widely used to convert monosubstituted alkenes into the corresponding methyl ketones, is thought to proceed through a PdII/Pd0 catalytic cycle involving a b-hydride elimination step. This mechanistic scenario is inapplicable to ...