A pyrethroid is an organic compound similar to the natural pyrethrins, which are produced by the flowers of pyrethrums (Chrysanthemum cinerariaefolium and C. coccineum). Pyrethroids are used as commercial and household insecticides.
In household concentrations pyrethroids are generally harmless to humans. However, pyrethroids are toxic to insects such as bees, dragonflies, mayflies, gadflies, and some other invertebrates, including those that constitute the base of aquatic and terrestrial food webs. Pyrethroids are toxic to aquatic organisms, especially fish. They have been shown to be an effective control measure for malaria outbreaks, through indoor applications.
Pyrethroids are excitotoxic to axons. They act by preventing the closure of the voltage-gated sodium channels in the axonal membranes. The sodium channel is a membrane protein with a hydrophilic interior. This interior is shaped precisely to allow sodium ions to pass through the membrane, enter the axon, and propagate an action potential. When the toxin keeps the channels in their open state, the nerves cannot repolarize, leaving the axonal membrane permanently depolarized, thereby paralyzing the organism. Pyrethroids can be combined with the synergist piperonyl butoxide, a known inhibitor of microsomal P450 enzymes which are important in metabolizing the pyrethroid. By that means, the efficacy (lethality) of the pyrethroid is increased. It is likely that there are other mechanisms of intoxication also. Disruption of neuroendocrine activity is thought to contribute to their irreversible effects on insects, which indicates a pyrethroid action on voltage-gated calcium channels (and perhaps other voltage-gated channels more widely).
Pyrethroids are classified based on their mechanism of biological action, as they do not share a common chemical structure. Many are 2,2-dimethylcyclopropanecarboxylic acid derivatives, like chrysanthemic acid, esterified with an alcohol. However, the cyclopropyl ring does not occur in all pyrethroids.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins.
Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy efficacy and resistance are inversely related. Cases of resistance have been reported in all classes of pests (i.e.
Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays a key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets; however, resistance of mosquitos and bed bugs to deltamethrin has seen a widespread increase. Deltamethrin is toxic to aquatic life, particularly fish. Although generally considered safe to use around humans, it is still neurotoxic. It is an allergen and causes asthma in some people. Deltamethrin is a highly effective insecticide.
Vegetables and water samples have been collected around the lake of Loumbila in Burkina Faso. Pesticides resi- dues in food commodities were analyzed using a modified QuEChERS extraction method prior analysis on GC-MS and UPLC-MS/MS of 31 pesticides. Maxim ...
Elsevier2017
, , ,
The present work assesses human exposure to pesticides in vegetable-producing areas in Burkina Faso, using hair as an indicator. The study design includes a comparison between operators who are occupationally exposed while working in the fields and a refer ...
2018
Due to conservation of neuronal functioning across phyla, molecular targets of insecticides are similar in insects and vertebrates. Insecticides thus pose a risk to aquatic vertebrates,such as fish, and potentially cause neurotoxic effects. Although these ...