Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons.
Its molecular formula is C5H9NO4. Glutamic acid exists in three optically isomeric forms; the dextrorotatory -form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation. Its molecular structure could be idealized as HOOC−CH(NH2)−(CH2)2−COOH, with two carboxyl groups −COOH and one amino group −NH2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH3+)−(CH2)2−COOH. It is encoded by the codons GAA or GAG.
The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH3+)−(CH2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation. This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH2)−(CH2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl.
When glutamic acid is dissolved in water, the amino group (−NH2) may gain a proton (H+), and/or the carboxyl groups may lose protons, depending on the acidity of the medium.
In sufficiently acidic environments, the amino group gains a proton and the molecule becomes a cation with a single positive charge, HOOC−CH(NH3+)−(CH2)2−COOH.
At pH values between about 2.5 and 4.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that detect potential dangers in the environment
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Glycine (symbol Gly or G; ˈɡlaɪsiːn) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid (carbamic acid is unstable), with the chemical formula NH2‐CH2‐COOH. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (GGU, GGC, GGA, GGG). Glycine is integral to the formation of alpha-helices in secondary protein structure due to its compact form. For the same reason, it is the most abundant amino acid in collagen triple-helices.
α-Ketoglutaric acid (2-oxoglutaric acid) is one of two ketone derivatives of glutaric acid. The term "ketoglutaric acid," when not further qualified, almost always refers to the alpha variant. β-Ketoglutaric acid varies only by the position of the ketone functional group, and is much less common. Its carboxylate, α-ketoglutarate (also called 2-oxoglutarate), is an important biological compound. It is the keto acid produced by deamination of glutamate, and is an intermediate in the Krebs cycle.
The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic. The urea cycle converts highly toxic ammonia to urea for excretion. This cycle was the first metabolic cycle to be discovered (Hans Krebs and Kurt Henseleit, 1932), five years before the discovery of the TCA cycle. This cycle was described in more detail later on by Ratner and Cohen.
Delves into the science of food fermentation, covering lactose metabolism, soy food fermentation, human milk production, kimchi making, and bacteria isolation.
Metabolic changes precede malignant histology. However, it remains unclear whether detectable characteristic metabolome exists in esophageal squamous cell carcinoma (ESCC) tissues and biofluids for early diagnosis. Here, we conduct NMR- and MS-based metabo ...
Single-molecule proteomics based on nanopore technology has made significant advances in recent years. However, to achieve nanopore sensing with single amino acid resolution, several bottlenecks must be tackled: controlling nanopore sizes with nanoscale pr ...
2024
,
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory ...