The small-world experiment comprised several experiments conducted by Stanley Milgram and other researchers examining the average path length for social networks of people in the United States. The research was groundbreaking in that it suggested that human society is a small-world-type network characterized by short path-lengths. The experiments are often associated with the phrase "six degrees of separation", although Milgram did not use this term himself.
Guglielmo Marconi's conjectures based on his radio work in the early 20th century, which were articulated in his 1909 Nobel Prize address, may have inspired Hungarian author Frigyes Karinthy to write a challenge to find another person to whom he could not be connected through at most five people. This is perhaps the earliest reference to the concept of six degrees of separation, and the search for an answer to the small world problem.
Mathematician Manfred Kochen and political scientist Ithiel de Sola Pool wrote a mathematical manuscript, "Contacts and Influences", while working at the University of Paris in the early 1950s, during a time when Milgram visited and collaborated in their research. Their unpublished manuscript circulated among academics for over 20 years before publication in 1978. It formally articulated the mechanics of social networks, and explored the mathematical consequences of these (including the degree of connectedness). The manuscript left many significant questions about networks unresolved, and one of these was the number of degrees of separation in actual social networks.
Milgram took up the challenge on his return from Paris, leading to the experiments reported in "The Small World Problem" in the May 1967 (charter) issue of the popular magazine Psychology Today, with a more rigorous version of the paper appearing in Sociometry two years later. The Psychology Today article generated enormous publicity for the experiments, which are well known today, long after much of the formative work has been forgotten.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers the basics of networks, focusing on brain networks, historical breakthroughs, small-world and scale-free network discoveries, and the importance of the human connectome.
This course provides an introduction to the physical phenomenon of turbulence, its probabilistic description and modeling approaches including RANS and LES. Students are equipped with the basic knowle
In mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience.
In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks.
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Accurately estimating 3D human pose (3D HPE) and joint locations using only 2D keypoints is challenging. The noise in the predictions produced by conventional 2D human pose estimators often impeded the accuracy. In this paper, we present a diffusion-based ...
Brain lesions caused by cerebral ischemia lead to network disturbances in both hemispheres, causing a subsequent reorganization of functional connectivity both locally and remotely with respect to the injury. Quantitative electroencephalography (qEEG) meth ...
FRONTIERS MEDIA SA2021
, ,
Recent transformer language models achieve outstanding results in many natural language processing (NLP) tasks. However, their enormous size often makes them impractical on memory-constrained devices, requiring practitioners to compress them to smaller net ...