The n-octanol-water partition coefficient, Kow is a partition coefficient for the two-phase system consisting of n-octanol and water. Kow is also frequently referred to by the symbol P, especially in the English literature. It is also called n-octanol-water partition ratio.
Kow serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value is greater than one if a substance is more soluble in fat-like solvents such as n-octanol, and less than one if it is more soluble in water.
If a substance is present as several chemical species in the octanol-water system due to association or dissociation, each species is assigned its own Kow value. A related value, D, does not distinguish between different species, only indicating the concentration ratio of the substance between the two phases.
In 1899, Charles Ernest Overton and Hans Horst Meyer independently proposed that the tadpole toxicity of non-ionizable organic compounds depends on their ability to partition into lipophilic compartments of cells. They further proposed the use of the partition coefficient in an olive oil/water mixture as an estimate of this lipophilic associated toxicity. Corwin Hansch later proposed the use of n-octanol as an inexpensive synthetic alcohol that could be obtained in a pure form as an alternative to olive oil.
Kow values are used, among others, to assess the environmental fate of persistent organic pollutants. Chemicals with high partition coefficients, for example, tend to accumulate in the fatty tissue of organisms (bioaccumulation). Under the Stockholm Convention, chemicals with a log Kow greater than 5 are considered to bioaccumulate.
Furthermore, the parameter plays an important role in drug research (Rule of Five) and toxicology. Ernst Overton and Hans Meyer discovered as early as 1900 that the efficacy of an anaesthetic increased with increasing Kow value (the so-called Meyer-Overton rule).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the distribution coefficient refers to the concentration ratio of all species of the compound (ionized plus un-ionized).
Covers free meshing algorithms, partitioning, and incompatible meshes in 3D simulations, emphasizing the importance of mesh quality and element compatibility.
Explores the partitioning of organic compounds and their solubility in different phases, considering factors like chain length, size, and halogenation.
In this work, we utilize a rich set of simulated and ground-based observational data in Tianjin, China to examine and compare the differences in aerosol acidity and composition predicted by three popular thermodynamic equilibrium models: ISORROPIA II, the ...
Bioaccumulation is defined as the enrichment of a compound in an organism relative to the surrounding water or its food, and is an important endpoint in chemical risk assessment. Under laboratory conditions, bioaccumulation is measured as bioconcentration ...
A series of bioactive molecules were synthesized from the condensation of aspirin or chlorambucil with terminal alkynes bearing alcohol or amine substituents. Insertion of the resulting alkynes into the iron-carbyne bond of readily accessible diiron bis(cy ...